L5

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Probability, statistics & Numerical Methods (CE)

Time: 3 Hours Max. Marks: 60

	Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.													
					4		•	4	.,			M	CO	BL
1.	(a)	Out of 800 fa expected to hav Assume equal p	ve (i) 2	boys	and 2 g	lren eac girls (ii)	at lea		-			6M	CO1	L2
	(b)	If X is a Poiss	on vari	ate suc	ch that	P(X =	0) = P	Y(X =	1), fin	dP(X=	0) and	6M	CO1	L5
		using recurrence	e form	ula det	ermine	_		ies at	x = 1, 2	2,3,4 and	5.			
2.		Construct a no hence find the t				the fol	O R) llowin	g freq	uency	distribut	ion and	12M	CO1	L3
		x	2		4	6	8		.0	Total				
		f	1	4	4	6	4 T – II	<u> 1</u>		16				
3.	(a)	The mean life company is co			_	100 flu	oresce	nt lig		-	-	6M	CO2	L5
		hours. The comcompany is 160				-	-			-	_			
	(b)	In a sample of are wheat eater this state at 1%	s. Can									6M	CO2	L5
			DOD.			(OR)							
4.	(a)	The average m while that for 3 whether the boy	36 girls	is 70	with a	standa					-	6M	CO2	L4
	(b)	In a large city physical defect school boys has significant?	A, 20% . In an	6 of a nother	randor large c	n samp ity <i>B</i> , 1	8.5%	of a r	andom	sample	of 1600	6M	CO2	L4
		_		_			T – II							
5.	(a)	A sample of 26 of 20 hours. hours. Is the sa	The m	anufac	cturer c	laims t	hat the					6M	CO3	L4
	(p)	Two independent values of the values		iples (of 8 an	d 7 ite	ms res	specti	vely h	ad the fo	llowing	6M	CO3	L4
		Sample 1	9	11	13	11	15	9	12	14				
		Sample 2	10	12	10	14	9 0 diffo	8	10	lr. ot 50/	I ()69			
		Do the two esti	maies (ır hobi	mauon		e dille OR)	ı 21811	muant.	iy at 370.	ros:			

A total number of 3759 individuals were interviewed in a public opinion 12M CO3 6. survey on a political proposal. Of them, 1872 were men and the rest women. A total of 2257 individuals were in favour of the proposal and 917 were opposed to it. A total of 243 men were undecided and 442 women were opposed to the proposal. Do you justify or contradict the hypothesis that there is no association between sex and attitude?

UNIT-IV

- 7. (a) Find a root of the equation $x^3 2x 5 = 0$ using bisection method corrected 6M CO4 L1 to four decimal places.
 - (b) Identify the real root of the equation $3x = \cos x + 1$ by Newton's method. 6M CO4 L3 (OR)
- 8. Solve the system of equations 20x+y-2z=17; 3x+20y-z=-18; 12M CO4 L3 2x-3y+20z=25 by Jacobi's iteration method.

UNIT-V

9. The following table gives the specific heat of ethyl alcohol of different 12M CO5 L5 temperatures. Estimate the specific heat corresponding to 15°C and 45°C.

Temperature(x°C)	0	10	20	30	40	50
Specific heat (y)	0.51	0.55	0.57	0.59	0.62	0.67

(OR)

10. A curve passes through the points (0,18), (1,10), (3,-18) and (6,90). 12M CO5 L5

Determine the curve y = f(x) by using Lagrange's interpolation formula.

SET - 1

Q.P. Code: 2001302

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Geology & Building Materials (CE)

Time: 3 Hours

Max. Marks: 60

		•	M	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	Explain any two folds and faults with neat sketches?	6M	CO1	L2
	(b)	Define geology and Explain the importance of geology from civil engineering with a case study?	6M	CO1	L1
		(OR)			
2.	(a)	What is meant by weathering of rocks? Explain briefly?	6M	CO1	L1
	(b)	Illustrate in brief about some common geological structure associated with the rocks?	6M	CO1	L2
		UNIT – II			
3.	(a)	Write the physical properties of limestone and sandstone?	6M	CO2	Li
	(b)	Write the physical properties of minerals galena and bauxite,?	6M	CO2	L1
	•	(OR)			
4.	(a)	Write the physical properties of basalt and quartzite?	6M	CO2	L1
	(b)	Explain the importance of study of topographical features from geological maps?	6M	CO2	L2
		UNIT – III			
5.	(a)	Explain the different types of pozzolanic materials and their merits?	6M	CO3	L2
	(b)	What are the various types of timbers used in construction?	6M	CO3	LI
		(OR)			
6.	(a)	Explain the manufacturing process of bricks?	6M	CO3	L2
	(b)	What are the various methods of storing the cement?	6M	CO ₃	L1
		UNIT – IV			
7.	(a)	Explain in detail the various types of roofing materials?	6M	CO4	L2
	(b)	Explain about Industrial Flooring, Vaccum Dewatered Flooring	6M	CO4	L2
		(OR)			
8.	(a)	Explain about cement concrete flooring, mosaic flooring and ceramic flooring?	6M	CO4	L2
	(b)	What are the different tests on bituminous materials? Explain any one? UNIT-V	6M	CO4	L1
9.	(a)	Write about fibre glass reinforced plastics and clay products used in civil engineering?	6M	CO5	L1
	(b)	Write in detail about fibre textiles and geo synthetics?	6M	CO5	L1
	(~)	(OR)			
10.	(a)	Explain about various types of polymers used in civil engineering?	6M	CO5	L2
	(b)	What are the applications of laminar composites?	6 M	CO5	L1

· K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Advanced Strength of Materials (CE)

Time: 3 Hours

Max. Marks: 60

			M	CO	BL
	ــــــــــــــــــــــــــــــــــــــ	UNIT - I			2020
-	170	Define the terms:	6M	CO1	L2
1.	(a)	(i) Slope (ii) Deflection (iii) Radius of curvature	0212		
	(b)	Determine the slope and deflection for a cantilever beam of span 10m loaded with point load of intensity 10kN at the free end and UDL of intensity 6kN/m throughout the span.	6M	CO1	L3
		(OR)		, <u>-</u> ,	
2		A beam carries a distributed load that varies from zero at support A to 50 kN/m at its overhanging end, as shown in Figure. Write the equation of the elastic curve for segment AB of the beam, determine the slope at support A, and determine the deflection at a point of the beam located 3 m from support A.	12M	C01	L3
		50 kN/m $EI = \text{constant}$ $E = 200 GPa$ $I = 95(10^6) \text{mm}^4$ $\frac{B}{10^{10}}$ $\frac{B}{10^{10}}$			
	.1	UNIT – II		<u></u>	
3.	(a)	(i) Differentiate between torque and torsion. (ii) Define pure torsion.	6M	CO2	L2
	(b)	Derive torsion equation considering all necessary notations.	6M	CO2	L2
	1 (n)	(OR)			
4.	(a)	Derive an equation for deflection of the closed coil helical spring considering the following data: W is the axial load, R is radius of the coil n is the number of turns of coil, C is the modulus of rigidity d is the diameter of the wire of the coil	6М	CO2	L2
	(b)	A metal bar of 10mm dia when subjected to a pull of 23.55KN gave and elongation of 0.3mm on a gauge length of 200mm. In a torsion test maximum shear stress of 40.71N/mm2 was measured on a bar of 50mm dia. The angle of twist measured over a length of 300mm being 0°21'. Deter poisson's. UNIT – III	6M	CO2	L3
5.	(a)	The figure shows the state of stress at certain point in a stresses body. The magnitudes of normal stresses in x and y direction are 100 MPa and 20 MPa respectively. Find the radius of Mohr's stress circle representing this state of stress.	6M	C03	L4
		G. G.			
	í				T .
	(b)	What is Mohr's circle? Discuss the significance of it.	6M	CO3	L

			·	,
cess	essary	6M	CO3	1.3
on	on the	6M	CO3	1.2
			•	
.h t	h both	6M	CO4	L3
	sed as Take	6M	CO4	L4
	nile its Take	6M	CO4	L3
l. E	. E for	6M	CO4	L3
		J		<u> </u>
for	for the	6M	CO5	L2
e 8	5 mm e 85% to 100		CO5	L3
ers.	rs.	6M	CO5	L2
b	s to be being hoop	l	CO5	L3
	_			

 π theorem, obtain an expression for Δp ?

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Fluid Mechanics (CE)

		SUB: Fluid Mechanics (CE)			
	T	ime: 3 Hours Max.	Marks	: 60	
		Answer any FIVE Questions choosing one question from each un	it.		
		All questions carry Equal Marks.			
			\mathbf{M}	CO	\mathbf{BL}
		UNIT – I			
1.	(a)	A plate 0.05 mm distance from a fixed plate moves at 1.2 m/s and requires a force of 2.2N/m ² to maintain this speed. Estimate the viscosity of the fluid between the plates.	6 M	CO1	L5
	(b)	Elaborately Explain the phenomenon of capillarity. Obtain an expression for capillary rise of a liquid?	6M	C01	L6
		(OR)			~ _
2.	(a)	Demonstrate the Newton 's law of viscosity. Deduce the expression for the dynamic viscosity?	6M	CO1	L2
	(b)	State Pascal's law and Derive pressure variation in liquid at rest? UNIT – II	6M	C01	L2
3.	(a)	Illustrate the Bernoulli's equation from fundamentals?	8M	CO2	L2
	(b)	The dia. of pipe at the section 1 & 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe. If the velocity of water flowing through the pipe at section 1 is 5 m/s. Determine also the velocity at the section 2.	6M	CO2	L3
		* ²			
		1 E D2615cm			
		D1=10 cm			
		V ₁ Å ₅ m/ ₅			
		2 7			
		(OR)			
4.	(a)	Define the equation of continuity. Obtain the expression for continuity equation in three dimensions?	6M	CO2	L1
	(b)	The velocity vector in a fluid flow is given by V=4x ³ i-10x ² yj+2tk. Estimate the velocity	6M	CO2	L5
		and acceleration of a fluid particle at $(2, 1, 3)$ at time $t = 1$.			
_	7-3	UNIT – III	6M	CO3	L2
5.	(a)	Derive the expression for discharge over a rectangular notch. An oil of specific gravity 0.85 is flowing through a venturi meter having inlet diameter	6M	CO3	L4
	(b)	20cm and throat diameter 10cm. The oil mercury differential manometer shows a reading of 30cm. Calculate the discharge of oil through the horizontal venturi meter. Take Cd as	01/1		2.7
		0.98.			
,	(-)	(OR) Derive the expression for discharge over a triangular notch?	6M	CO3	L3
6.	(a) (b)	A rectangular notch 400 mm long is used for measuring a discharge of 0.003 m ³ /s. An	6M	CO3	L4
	(5)	error of 1.5 mm was made, while measuring the head over the notch. Calculate the			
		percentage error in the discharge. Assume Cd = 0.6			
		UNIT – IV			
7.	(a)	List out the minor losses in closed conduit flow and discuss their significance.	4M	CO4	L1
	(b)	The rate of flow water through a horizontal pipe of 0. 25m m ³ /s. The dia of the pipe which is 200mm is suddenly enlarged to 400mm, the pressure intensity in the smaller	8M	CO4	L5
		pipe is 11.772 N/cm ² . Determine i) Loss of head due to sudden enlargement ii) Pressure			
		intensity in the large pipe iii) power lost due to enlargement?			
		(OR)			
8.	(a)	What is dimensionless number? Explain different types of numbers?	4M	CO4	L2
	(b)	Derive the Darcy-Weisbach equation for frictional head loss in a pipe? UNIT-V	8M	CO4	L4
9.	(a)	Demonstrate Reynolds Experiment with a neat sketch?	10M	CO5	L3
2.	(b)	Define Model and Prototype?	2M	CO5	L1
	(~)	(OR)			
10.		The pressure difference Δp in a pipe of diameter D and length l due to turbulent flow	12M	CO5	L5
		depends on the velocity V, viscosity μ , density ρ , and roughness k,. Using Buckinghams			
		π theorem, obtain an expression for Ap ?			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Geomatics (CE)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

M CO BL

UNIT - I

- 1. (a) Discuss briefly the classification of surveying based on purpose and 6M CO1 L1 Instruments.
 - (b) A survey line BAC crosses a river. A and C being on the near and opposite 6M CO1 L5 banks respectively. A perpendicular AD 36 m long is set out A. If the bearing of AD and DC are 38⁰ 45 and 278⁰ 45 respectively and the chainage at A is 775.8m. Find the chainage at C.

(OR)

- 2. (a) Give in a tabular form, the difference between prismatic compass and 6M CO1 L2 surveyor's compass
 - (b) The following bearings were taken in running a compass traverse: 6M CO1 L3

Line	F.B.	·B.B.
AB	124 ⁰ 30'	304 ⁰ 30'
BC	68 ⁰ 15'	246 ⁰ 0'
CD	310 ⁰ 30'	135 ⁰ 15'
DA	200 ⁰ 15'	17 ⁰ 45'

At what stations do you suspect local attraction? Find the correct bearings of lines

UNIT-II

3. (a) Explain any two methods of plane table surveying.

6M CO₂ L₂

(b) The following staff readings were observed in sequence; 1.324. 2.605, 1. 6M CO2 L4 385. 0 638, 1.655, 1.085, 2.125, and 1, 555. The instrument was shifted after the third and sixth readings. The third reading was taken to an arbitrary bench-mark of elevation 220.000m. Find the reduced levels of the other points.

(OR)

- 4. (a) Explain the following terms: Height of instrument, Back sight, Foresight and 6M CO2 L1 Intermediate sight.
 - (b) Discuss the uses of contour maps with sketch.

6M CO₂ L₂

UNIT - III

- 5. (a) List out the method used to measure the horizontal angles by using a 6M CO3 L2 Theodolite. Explain any one method in detail.
 - (b) The record of a closed traverse is given below, with two distances missing. 6M CO3 L5

Line	Length (m)	Bearing
AB	100.5	N30 ⁰ 30'E
BC	?	S45 ⁰ 00'E
CD	75.0	S40°30'W
DE	50.5	S60 ⁰ 00'W
EA	?	N40 ⁰ 15'W

Calculate the length of BC and EA.

Describe the conditions under which tacheometric surveying is 6M CO3 L2 6. advantageous. Explain how you would obtain in the field the constants of a tacheometer. Following observations were taken with a tacheometre fitted with an 6M CO3 L5 anallatic lens having value of constant to be 100. Inst. Staff R.B Vertical Staff Readings station Station angle N 36° W 4º 15' 0.9 2.1 A 1.5 0 N 24° E 5° 45' 1.8 2.7 0 В 3.5 Calculate the horizontal distance between A and B. UNIT-IV List the general methods of calculating area with one example 6M CO4 L2 7. Find the capacity of reservoir for a given data by Prismoidal rule. 6M CO4 L3 (b) 254 258 262 264 Contour 252 256 260 266 735 | 1055 | 1265 | 1395 | Area (cm²) 105 | 254 | 485 1590 (OR) What is transition curve? What are the requirements of an ideal transition 6M CO4 Ll 8. L6 Prepare a table of Rankine's tangential angles to set out a circular curve of 6M CO4 radius 360 m, when the straight meet at chainage 1640m and the deflection angle is 24° . Take peg interval = 20 m. **UNIT-V** Explain briefly the principle of Electronic Distance Measurement. 9. 6M CO5 L2 Describe the basic features of a total station and its advantages. CO₅ L2 6M

Discuss the applications of drone surveying.

List out the errors in total station survey and explain them.

10.

L1

L2

6M

CO5

6M CO5

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Switching Theory & Logic Design (EEE)

Time: 3 Hours

Max. Marks: 60

		The second court of the se			
		UNIT – I	M	CO	BL
1.	(a)		C3. //	001	7.6
٠.	(a)	(i) $(26.24)_8 = (x)_{10}$ (ii) $(16.5)_{16} = (x)_{10}$ (iii) $(1011011)_2 = (x)_{16}$	6M	CO1	L5
	(b)		6M	CO1	L5
		method: $(677)_{10} - (899)_{10}$	****		
		(OR)			
2.	(a)	Perform the following addition using excess-3 code	6M	CO1	L5
	` `	(i) 386 + 756 (ii) 1010 + 444	01.1	00.	220
	(b)	What is the Hamming code? How is the Hamming code word tested and	6M	CO1	L3
	•	corrected, explain with an example.	01.1		130
		UNIT – II			
3.	(a)	What are universal gates? Implement all the basic gates using universal gates.	6M	CO2	L6
	(b)	Simplify the following Boolean expressions using the Boolean theorems	6M	CO ₂	L4
		(i) $(A+B+C)(B'+C)+(A+D)(A'+C)$ (ii) $(A+B)(A+B')(A'+B)$			
		(OR)			
4.	(a)	Simplify the following function using Karnaugh map method	6M	CO ₂	L5
		$F(A,B,C,D) = \Sigma m(0,1,2,3,4,6,9,10) + d(7,11,12,13,15)$			
	(b)	Reduce the following expression using tabulation method	6M	CO2	L3
		$Y(A, B, C, D) = \Sigma m(1, 3, 5, 8, 9, 11, 15)$			
		UNIT – III			
5.	(a)	Design a half subtractor and full subtractor using logic gates.	6 M	CO3	L6
	(b)	Perform the realization of half adder and full adder using decoders and logic	6 M	CO ₃	L4
		gates.			
		(OR)			
6.	(a)	Design a BCD adder using 4-bit parallel binary adder and logic gates.	6M	CO3	L6
	(b)	Explain the operation priority encoder with a neat diagram.	6M	CO ₃	L2
		UNIT – IV			
7.	(a)	Draw the circuit diagram of a positive edge triggered JK flip-flop and explain	6M	CO4	L2
		its operation with the help of a truth table.			
	(p)	With the aid of external logic, Convert a D flip-flop into JK flip-flop.	6M	CO4	L5
_		(OR)			
8.	(a)	Explain different types of shift registers.	6M	CO4	L2
	(b)	Explain the operation of 4-bit ring counter with circuit diagram and timing diagrams.	6M	CO4	L4
		UNIT-V			
9.		Implement the following Boolean functions using PLA.	12M	CO5	L4
		$A(x, y, z) = \Sigma(0,1,2,4,6)$			
		$B(x, y, z) = \Sigma(0, 2, 6,7)$			
		$C(x, y, z) = \Sigma(3,6)$			
		(OR)			
10.	(a)	Write explanatory notes on ROM and PROM.	6M	CO5	L2
	(b)	What is PLD? Compare the three combinational PLDs.	6M	C05	L5

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Electromagnetic Field Theory (EEE)

Max. Marks: 60 Time: 3 Hours

	Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.								
		B.E	CO	DΣ					
•		XIATIVE X	M	CO	\mathbf{BL}				
4	(-)	UNIT - I	6M	CO1	L2				
1.	(a)	State and explain Coulomb's Law.	6M	CO1	L2				
	(b)	A plane $x = 4$ carry a charge density 10nc/m^2 and a line $x = 0$ and $z = 2$ carry a line charge density 10nc/m . Calculate \bar{E} at $(1, 1, -1)$ due to these two	OTAT	COI	LI4				
		charges.	٠						
		(OR)							
2.		What is Dipole Moment? Obtain expression for the Potential and Electric Field due to an Electric Dipole.	12M	CO1	L3				
		UNIT – II							
3.	(a)	Derive Ohms Law in point form.	6M	CO ₂	L2				
	(b)	Find the current passing through in the downward direction through the	6M	CO2	L3				
		cylinder defined by $0 \le Z \le 1$, $0 \le r \le 1$, if the current density in the cylinder is $\bar{J} = 35e^{-2z} [r\bar{\alpha}_r + \bar{\alpha}_z] \text{ A/m}^2$.							
		(OR)							
4.	(a)	Derive the equation for a capacitance of a parallel plate capacitor	6M	CO2	L3				
	(b)	A parallel plate capacitor consists of two square metal plates with 50mm side	6M	CO ₂	L3				
		and separated by 10mm. A slab of sulphur with permittivity of 4 of 6mm thick							
		is placed on the lower plate with an air gap of 4mm. Find the Capacitance. UNIT – III							
5.	(a)	Determine B due to a straight conductor of length Lm and steady current I	6M	CO3	L3				
٠.	(••)	Amps at a distance of R m from the centre of line current.							
	(b)	If the magnetic field intensity is $\overline{H} = x^2 \overline{a_x} + 2yz \overline{a_y} + (-x^2) \overline{a_z} A/m$. Find	6M	CO ₃	L3				
		the current density at point							
		(i) 2, 3, 4 (ii) $\rho = 6$, $\phi = 45^{\circ}$, $z = 3$ (iii) $r = 3.6$, $\Theta = 60^{\circ}$, $\phi = 90^{\circ}$							
_		(OR)	6M	CO3	L3				
6.	(a) (b)	State and explain Ampere's Circuital Law. In the region 0 <r<0.5m coordinators,="" current="" cylindrical="" density="" in="" is<="" td="" the=""><td>6M</td><td>CO3</td><td>L3</td></r<0.5m>	6M	CO3	L3				
	(u)	$\bar{I} = 4.5e^{-2r} \bar{a}_s$ A/m ² and $\bar{I} = 0$ elsewhere. Use Ampere's Circuital Law to	01,1	000					
		find $ar{H}$.							
		UNIT – IV							
7.	(a)	a) Derive Lorentz Force Equation. Obtain the expression for the force	6M	CO4	L2				
		experienced by a conductor placed in magnetic fields.		~~.					
	(b)		6M	CO4	L2				
		current of 5A in $\overline{\alpha}_{s}$ direction and the magnetic field is							
		$\overline{B} = 3.5 \times 10^3 (\overline{a_x} - \overline{a_y}) Tesla$. Where $\overline{a_x}$ and $\overline{a_y}$ are unit vectors							
n	()	(OR)	ζМ	CO4	17				
8.	(a)	Derive the Inductance of a Solenoid and Toroid.	6M						
	(b)	Two coils are wound on a common circular magnetic circuit of 45cm ² in section and having mean radius of 50cm. One coil has 180 turns and other has	6M	CO4	LS				

750. Calculate the mutual inductance of coils, if the relative permeability of iron path is 2400. If both the coils are connected in series what would be the

self-inductance of coil.

UNIT-V

9.	(a) (b)	State Faraday's laws of electromagnetic induction Find the displacement current density within a Parallel Plate Capacitor where $\varepsilon = 100\varepsilon_0$, $a = 0.01\text{m}^2$, $d=0.05\text{mm}$ and the capacitor voltage is $100\sin 200\pi t$ volts.	6M 6M	CO5 CO5	L1 L2
		(OR)			
10.	(a)	Distinguish between conduction Current and Displacement Current. Prove that conduction current through a capacitor is also equal to its displacement current.	6M	CO5	L2
	(b)	A straight conductor of length 40cm moves perpendicular to its axis at a velocity of 50m/s in a uniform magnetic field of flux density 1.2T. Evaluate the emf induced in the conductor, if the direction of motion is 1. Normal to the field 2. Parallel to the field 3. At an angle of 60° to the field.	6M	CO5	L2

SET - 1

CO₃

6M

L1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Electrical Circuit Analysis – II (EEE)

Time: 3 Hours Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

M CO BL

UNIT - I

- 1. Derive the expressions for Resonant frequency, Quality factor and Band width 6M CO₁ L5 of series RLC circuit
 - Explain the locus diagram of series R-C circuit and when C is variable 6M CO₁ L2 (OR)
- 2. Derive expression for half power frequencies of a RLC series network. 6M CO1 L5
 - If for a series RLC circuit $R=5\Omega$, L=2H, C=3F What is Resonant frequency 6M CO₁ L2 and Quality factor?

UNIT - II

- Explain about Necessary Conditions for Driving Point Functions 3. 6M CO₂ L2
 - An RC driving point function has zeros at S = -2 & s = -5. Determine L_5 6M CO₂ admissible poles for the functions.

(OR)

4. Draw the pole zero diagram for the given network function and hence 12M CO2 L5Determine v(t). V(s) = 4(s+2)s/(s+1)(s+3)

UNIT - III

- L55. (a) Determine the transmission line parameters when the two transmission 6M CO₃ networks having the transmission parameters A1, B1, C1, D1 and A2, B2, C2, D2 are connected in cascade.
 - (b) Obtain 'Y' parameters for the given network shown in below figure. CO₃ 6ML3

(a) Find the Z parameters and Y parameters of the T- network shown in figure 6. 6M CO₃ L2below.

- (b) Define driving point impedance and Explain briefly.
 - UNIT-IV
- 7. What are the initial conditions? Why are they needed? Explain CO4 L1(a) 6M
 - The switch in the below figure has been in position a for a long time, At t = 46M CO₄ L5s the switch is moved to position b and left there. Determine v(t) at t = 10 s.

8. For the circuit shown below Figure, Define the current equation when switch 12M CO4 L5 S is opened at t = 0.

UNIT-V

- 9. (a) Explain about the transient response of series RLC circuit to the AC excitation 6M CO5 L2 for zero initial conditions.

 (b) Derive the expression for the voltage across the inductor and capacitor in a 6M CO5 L5
 - (b) Derive the expression for the voltage across the inductor and capacitor in a series RLC circuit (R = 5Ω, L = 5mH, C = 5μF) excited by a sinusoidal voltage of 100V, 50 Hz if the supply is connected at t= 0. Assume zero initial conditions.

(OR)

- 10. (a) Explain about the transient response of series RL circuit to the AC excitation 6M CO5 L2 for zero initial conditions.
 - (b) Derive the expression for the current in a series RL circuit (R = 10Ω, 6M CO5 L5 L = 10mH) excited by a sinusoidal voltage of 100V, 50 Hz if the supply is connected at t = 0. Assume zero initial conditions.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Electrical Measurements & Measuring Instruments (EEE)

Time: 3 Hours Max. Marks: 60

		An questions carry Equal warks.			
		UNIT - I	M	СО	BL
1.	(a)	Derive the Torque equation for moving iron instrument.	6M	CO1	L2
1.	(b)	Explain deflecting, control and damping torques.			
		(OR)	6M	CO1	L1
2.	(a)	Describe the principle of PMMC meters	6M	CO1	L2
	(b)	How the range of DC ammeter and DC voltmeter can be extended. Derive the expression to find the shunt resistance and multiplier resistance? UNIT – II	6M	CO1	L3
3.	(a)	Explain any two errors that occur in electrodynamometer type wattmeter and its compensation	6M	CO2	L2
	(b)	Describe the construction of single phase dynamometer. (OR)	6M	CO2	L2
4.	(a)	Explain the operation of single phase induction type energy meter.	6M	CO2	L2
	(b)	A 50A, 230V meter on full load test makes 61 revolutions in 37s. If the normal disc speed is 520 revolutions per kWh, find the percentage error. UNIT – III		CO2	L3
5.	(a)	With the help of neat sketch describe the method of measurement of earth resistance.	6M	CO3	L2
	(b)	What is Wheatstone's bridge? On what factors does its sensitivity depend? Explain.	6M	CO3	L4
_		(OR)			
6.	(a)	Show how the Wien's bridge can be used for the measurement of frequency in audio range. Derive the equation for frequency f.			L2
	(b)	In Hay's bridge the four arms are arranged as under: AB is a resistance of 600Ω in series with an inductor of 0.18 H, BC and DA are non-inductive resistances of 1200 Ω each and CD consists of a resistance R in series with a capacitor C. A potential difference of 3V at a frequency of 50Hz is applied between A and C. Determine the values of R and C. Derive the condition for bridge balance. UNIT – IV	6M	CO3	L6
7.	(a)	Describe how high currents and voltages are measured with the help of instrument transformers. Draw diagrams to illustrate your answer.	8M	CO4	L4
	(b)	Describe the advantages of instrument transformers as regards extension of range of current and voltage on high voltage a.c. systems. (OR)	4M	CO4	L2
8.	(a)	Draw the circuit diagram of Crompton's potentiometer and explain its working. Describe the steps used when measuring an unknown resistance.	6M	CO4	L4
	(b)	Power is measured with an a.c. potentiometer. The voltage across a 0.1Ω standard resistance connected in series with the load is $0.35 - j0.10V$. The voltage across 300:1 potential divider connected to the supply is $0.8 + j0.15V$. Determine the power consumed by the load and the power factor. UNIT-V	6M	CO4	L5
9.	(a)	Explain how CRO can be used to measure frequency and phase angle	6M	CO5	L2
	(b)	Explain the major parts of CRT with a block diagram (OR)	6M		L2
10.	(a)	With necessary diagrams explain Ramp type digital voltmeter	6M	CO5	L2
	(b)	With necessary diagrams explain Integrating type digital voltmeter		CO5	L2

SET - 1

Q.P. Code: 2002305

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular/Supplementary Examinations of March 2023 SUB: DC Machines & Transformers (EEE)

Max. Marks: 60 Time: 3 Hours Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

		An questions carry Educations	Marks	CO	BL
		**************************************	MINING	CO	<i>D</i> D
		UNIT - I	6M	CO1	L3
1.	(a)	Derive the emf equation of DC generator	6M	CO1	L1
	(b)	List the different Types of Dc generators	VIII		
		(OR)	6M	CO1	L2
2.	(a)	Explain clearly the armature reaction of DC Generator	6M	CO1	L3
	(b)	Draw and explain open circuit characteristics of DC shunt generator	0112		
		UNIT – II	6M	CO2	L2
3.	(a)	Describe Principle of operation DC motor	6M	CO2	L1
	(b)	Write the significance of back emf in DC motor	01.2	•	
		(OR)	6M	CO2	L2
4.	(a)	Explain the different Speed control methods of DC shunt motor Explain the different Speed control methods of DC series motor	6M	CO2	L2
	(b)	UNIT – III	•		
	(-)	Derive the condition for maximum efficiency of a DC machine	6M	CO3	L3
5.	(a)	Explain different losses in a DC machine	6M	CO3	L2
	(b)	(OR)			
_	(-)	Describe the test procedure of swinburne's test with neat circuit diagram	6M	CO3	L2
6.	(a)	List the merits and demerits of Swinburne's test	6M	CO3	L1
	(b)	UNIT – IV			
-7	(a)	Explain the working principle of single phase transformer	6M	CO4	L2
7.		A 2200/200 V transformer draws a no load primary current of 0.6 A and	6M	CO4	L4
	(b)	absorbs 400 watts. Find the magnetizing and iron loss currents.			
		(OR)			
8.	(a)	Explain OC test of a transformer with neat circuit diagram	6M	CO4	L2
	(b)	Explain SC test of a transformer with neat circuit diagram	6M	CO4	L2
	(2)	UNIT-V			
9.	(a)	What is mean by auto transformer and compare with two winding	6M	CO5	L2
	(-)	transformer		CO5	L4
	(b)	An auto transformer supplies a load of 3kw at 115v at a unity power factor. If the applied primary voltage is 230v, calculate the power transferred to	. U ltz	005	
		the load (a)inductively(ii)conductively			
		(OR)			
10.	(c)	The state of the s	6M	CO5	L4
10.	٠,	and the state of the state of companions	6 M	COS	L4
	(b)	Compare a compar			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Universal Human Values (EEE, ECE & AI ML)

Time: 3 Hours

Max. Marks: 60

All questions carry Equal Marks.							
		•	\mathbf{M}	CO	BL		
		UNIT - I	w	001	~ 4		
1.	(a)	Integrity, Trustworthiness and Respect for others are driving force to live peacefully – Discuss.	6M	COI	L4		
	(b)	Write a short note on Work Ethics-Service.	6M	CO1	L1		
	(5)	(OR)		~~1	~ <i>p</i>		
2.	(a)	Define Empathy and how it works in personal and professional.	- · · · ·	CO1	L5 L2		
	(b)	Illustrate the aspect of Spirituality at Work place and Corporate Excellence. UNIT – II	6M	CO1	1.2		
3.	(a)	Write a note on about the importance of respecting the professions of all people.	6M	CO2	L6		
٥.	(a)	Make a list of 10 professions for today's youth other than those in the medical					
		and Engineering field.		~~~	* 4		
	(b)	What is Moral dilemma? List out various situations when moral dilemmas arise.	6M	CO2	FT		
	• •	(OR)	CN #	ഹവ	L3		
4.	(a)	'Personal life leads to Professional life' - Elucidate.	6M 6M	CO2	L2		
	(b)	Explain Kohlberg's theory on moral autonomy.	OTAT	COZ	112		
		What do you mean by competence in professional ethics? Elaborate with	6M	CO3	L5		
5.	(a)	examples			T 0		
	(b)	Define the safety and risk assessment and list out few factors to reduce risks.	6M	CO3	L2		
	(-)	(OR)	CB #	COZ	L1		
6.	(a)	What are the factors that influence the risk benefit analysis?	-	CO3	L4		
	(b)	How does engineering disaster occur? Explain briefly about Chernobyl case study.	6M	CO3	Lit		
		TINIT – IV					
7.	(a)	Natural acceptance is innate, invariant and universal. Explain this statement	6M	CO4	L2		
••	(4)	ith an avample					
	(b)	Mutual fulfillment in human relationships is something we want, we aspire for,	6IVI	CO4	L4		
	` '	Justify the statement.					
		(OR)	6M	CO4	L1		
8.	(a)	What is value education? Why there is a need of value education? What are the	0111				
		basic guidelines for value education?	6M	CO4	L3		
	(b)	Define Self exploration. What is the content of Self exploration? UNIT-V					
•	(-)	What is meaning of Justice in human relationships? How does it follow from	6M	CO5	L 6		
9.	(a)	family to record family?					
	(b)	Give the difference between intention and competence when you have to judge	6M	CO5	1.4		
	ω)	the other. Why is it important?					
		(OR)	Ch.A	COS	L2		
10.	(a)	Bring out the differences and similarities between a human being and an animal	. OTAN		, ,1,1,1,1		
		Circumples to support your answer		COS	5 L6		
	(b)	Explain in detail the harmony in nature. How can we ensure harmony in self(I)?	0212				

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Fundamentals of Statistics and Dynamics (ME)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

		The state of the s	\mathbf{M}	CO	BL
		UNIT - I			
1.	(a)	Define the terms force, moment and couple and mention their units.	6M	CO1	Li
	(b)	Explain the concepts of resolution of force and resultant force with example.	6M	CO1	L3
	` '	(OR)			
2.	(a)	Determine the reactions at simply supports A and B as shown in figure.	6M	CO1	L3
	• •	12KN/m			
		V C↑ 30KN D B			
		2m → 3m → 4m →			
		201 74 510 74 400			
	(b)	What is beam? Classify the types of beams with diagrams.	6M	CO1	L2
		$\mathbf{UNIT} - \mathbf{II}$			
3.	(a)	Explain the term frame and classify it with suitable sketch.	6M	CO ₂	L2
	(b)	How to analyze the frames by using method of joints? Explain.	6M	CO ₂	L3
	• •	(OR)			
4.	(a)	Describe the term friction. What are the factors influencing the friction?	6 M	CO ₂	L2
•	(b)	In the figure, the two blocks (A= 30N and B= 50N) are placed on rough	6M	CO ₂	L3
	` ,	horizontal plane. Coefficient of friction between the block A and the plane is			
•	•	0.3 and that between B and plane is 0.2. Find the minimum value of force P to			
		just move the system. Also find the tension in the string.	•		

UNIT - III

Discuss the procedure to find the location of centroid of composite plane area. 5. 6M CO₃ L2 (b) Find the centroid of the area shown in figure. 6MCO₃ L3

Locate the centroid of the given figure about X and Y axes. All dimensions 6M CO₃ L₃ 6. are in m.

Determine the centroid of a triangle of base 'b' and height 'h' about its base. 6M

CO₃ L₃

$\mathbf{UNIT} - \mathbf{IV}$

7.	(a)	State and prove the parallel axis theorem on moment of inertia for a plane area.	6M	CO4	L2
	(b)	Find the moment of inertia of a triangle with base 'b' and height 'h' about its base.	6M	CO4	L3
		(OR)			
8.		Find the moment of inertia of shaded area shown in figure about its centroidal axis parallel to X-axis.	12M	CO4	L3
		<i>ጐ</i> ን			
		E O MININ			
		60mm K			
		UNIT-V			
9.	(a)	Discuss the terms distance, displacement, Velocity and acceleration with their units.	6M	CO5	L2
	(b)	Explain the equations of motion of a particle in straight line with uniform acceleration.	6M	CO5	L3
		(OR)			
10.	(a) (b)	Express the torsion formula and define the each term in formula. What is spring? Classify the springs with applications.	6M 6M	CO5 CO5	L3 L2

SET - 1

Q.P. Code: 2003302

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Fluid Mechanics & Hydraulic Machinery (ME)

Max. Marks: 60 Time: 3 Hours Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

			M	CO	\mathbf{BL}
		UNIT - I	C 71 0°	CO1	T 0
1.	(a)	What is the difference between the dynamic viscosity and kinematic viscosity? State their units of measurements.	6M	CO1	L2
	(b)	Define viscosity. A plate having an area of 0.7 m ² is sliding down the inclined plane at 450 to the horizontal with a velocity of 0.45 m/s. there is a cushion of fluid 2 mm thick between the plane and the plate. Find the viscosity of the fluid if the weight of the plate is 300N.	6M	CO1	L5
2.		(OR) An inverted differential manometer containing an oil of specific gravity 0.9 is connected to find the difference of pressures at two points of a pipe containing water. If the manometer reading is 40 cm, find the difference of pressures. UNIT – II	12M	CO1	L5
3.		Define the equation of continuity. Obtain an expression for continuity equation for one dimensional flow.	12M	CO2	L4
1		(OR) Derive Bernoulli's equation through Euler's equation of motion.	12M	CO2	L
4.		UNIT – III			
5.		Determine the rate of flow of water through a pipe of diameter 20 cm and length of 50 m when one end of pipe is connected to a tank and other end of pipe is open to the atmosphere. The pipe is horizontal and height of water in the tank is 4 m above the center of the pipe. Consider all minor losses and take f= 0.009.	12M	CO3	L5
		(OR)		~~~	Y 1
6.		Derive an expression for Darcy Weisbach equation. UNIT – IV	12M	CO3	L4
7.	(a)	Explain in detail laminar boundary layer, turbulent boundary layer, laminar sub-layer.	6M	CO4	L2
	(b)	Derive an expression for minor losses due to sudden contraction. (OR)	6M	CO4	L4
8.		Find the displacement thickness, energy thickness and momentum thickness for the velocity distribution in the boundary layer given by $\frac{u}{v} = \frac{y}{s}$, where u is the velocity at distance y from the plate and u=U at y= δ , where δ = boundary layer thickness. Also calculate the value of δ */ Θ . UNIT-V	12M	CO4	L5
9.		A Pelton wheel has a mean bucket speed of 10 meters per second with a jet of water flowing at the rate of 700 litres/s under a head of 30 meters. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and hydraulic efficiency of the turbine. Assume coefficient of velocity as 0.98.	12M	CO5	L5
10.	(a) (b)	(OR) Explain the working principles of reciprocating pump with a neat sketch. Define the terms 'unit power', 'unit speed' and 'unit discharge' with reference to a hydraulic turbine. Also derive expressions for these terms.	6M 6M	CO5 CO5	L2 L1

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Manufacturing Processes (ME)

Time: 3 Hours Max. Marks: 60

			M	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	Define pattern and briefly explain any six types of patterns with a neat sketch.	6M	CO1	L2
	(b)	Write the advantages and disadvantages of casting in detail.	6M	CO1	L2
		(OR)			
2.	(a)	With a neat sketch explain clay content test.	6M	CO1	L2
	(b)	Explain the concept of Allowances. Write different types of allowances. UNIT – II	6M	CO1	L2
3.	(a)	Describe the CO2-gas molding process in detail using suitable sketches and	6M	CO2	L3
		state its advantages, disadvantages and applications.			
	(b)	Name the various defects which occur in sand castings and state their probable causes and remedies.	6M	CO2	L2
		(OR)			
4.		Explain in detail the working of a cupola furnace with a neat sketch, stating different zones?	12 M	CO2	L2
		UNIT – III			
5.	(a)	Explain "oxy-acetylene gas welding" with a neat sketch indicating different flames?	6M	CO3	L2
	(b)	With a neat sketch, explain the working principle of Thermit welding process.	6M	CO3	L2
		(OR)		000	т.
6.	(a)	Explain plasma arc welding with applications.	6M	CO3	L2
	(b)	Explain the two solid state welding's	6M	CO3	L2
		i) Explosive welding ii) Friction welding UNIT – IV			
7.	(a)	Differentiate between hot working and cold working.	6M	CO4	L2
	(b)	What do you understand by mechanical working of metals? Define recrystalline temperature.	6M	CO4	L3
		(OR)			
8.	(a)	Describe briefly with neat sketches all the process of extrusions.	6M	CO4	L2
	(b)	Explain any four forging defects with a neat sketch.	6M	CO4	L2
		UNIT-V			
9.	(a)	With the aid of a sketch, briefly describe the process of spinning. Why is it called a flow turning process?	6M	CO5	L3
	(b)	With a neat sketch explain the following. i) Bending ii)Embossing iii)coining	6M	CO5	L2
		(OR)			
10.	(a)	List out some Important defects prevalent in sheet metal formed parts.	6M	CO5	L2
	(b)	Explain with a neat sketch wire drawing operation.	6M	CO5	L2

water as 4.187 kJ/kgK

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Engineering Thermodynamics (ME)

	Time: 3 Hours Max. M			60	
Answer any FIVE Questions choosing one question from each unit					
		All questions carry Equal Marks.	* *	CO	T) T
		UNIT - I	M	CO	BL
1	(0)	Write short notes on quasi-static process and its characteristic features.	6M	CO1	L1
1.	(a) (b)	A new scale N of temperature is divided in such a way that the freezing point of	6M	COI	L3
	(1)	ice is 100 ° N and the boiling point is 400 ° N. What is the temperature reading	0171	COI	1,5
		on this new scale when the temperature is 150° C? At what temperature both the			
		Celcius and the new temperature scale reading would be the same?			
		(OR)			
2.	(a)	Show that heat is a path function and not a property.	6M	CO1	L2
	(b)	A gas expands from an initial state with $p1 = 350$ kPa and $V_1 = 0.045$ m ³ to a	6M	CO1	L4
		final state where $p_2 = 140$ kPa. If the pressure-volume relationship during the			
		process is pV^2 = constant. Calculate the work in kJ.			
_		UNIT – II	475.00	G00	T 0
3.	(a)	What is PMM1? Why is it impossible?	4M 8M	CO2 CO2	L2 L4
	(b)	A mass of 6.8 kg gas expands within a flexible container so that the p-v relationship is of the form $pv^{1.2}$ = constant. The initial pressure is 1210 kPa and	OIVI	COZ	LH
		the initial volume is 1.2 m ³ . The final pressure is 52 kPa. If specific internal			
		energy of the gas decreases by 44 kJ/kg, calculate the heat transfer in magnitude			
		and direction.			
		(OR)			
4.	(a)	Derive an expression for work output from a turbine using SFEE.	4M	CO2	L3
	(b)	Steam flows through a horizontal nozzle @ 0.3 kg/s entering with a velocity of	8M	CO2	L4
		30 m/s and at an enthalpy of 2800 kJ/kg. It leaves the nozzle with an enthalpy of			
		2600 kJ/kg. Neglecting heat loss from the nozzle determine its exit velocity.			
		Also find its exit specific volume if the area of the nozzle at its outlet is 16 cm ² UNIT – III			
5.	(0)	Explain Kelvin-Planck statement of second law of thermodynamics.	6M	CO3	L2
J.	(a) (b)	A heat engine receives half of its heat supply at 1200 K and half at 540 K while	6M	CO3	L4
	(0)	rejecting heat to a sink at 310 K. Calculate the maximum thermal efficiency of	0112	000	
		the heat engine.			
		(OR)			
6.		A heat pump working on the Carnot cycle takes in heat from a reservoir at 5° C	12M	CO3	L4
		and delivers heat to a reservoir at 60° C. The heat pump is driven by a reversible			
		heat engine which takes in heat from a reservoir at 840° C and rejects heat to a			
		reservoir at 60° C. The reversible heat engine also drives a machine that absorbs			
		30 kW. If the heat pump extracts 17 kJ/s from the 5°C reservoir, determine:			
		 (i) The rate of heat supply from the 840⁰ C source. (ii) The rate of heat rejection to the 60⁰ C sink 			
		UNIT - IV			
7.	(a)	State and prove Clausius' theorem.	6M	CO4	L3
. •	(b)	Two kg of water at 85°C is mixed adiabatically with 3.25 kg of water at 35°C in	6M	CO4	L4
	` /	a constant pressure process of 1 atmosphere. Calculate the increase in the			
		entropy of the total mass of water due to the mixing process. Consider Cp of			
		4 107 L-1/L-1/			

(a)	What is meant by availability?	4M	CO4	L2
(b)	Derive the expressions for availabilities of a close system and a steady flow open	8M	CO4	L3
	system			
	UNIT-V			
(a)	Draw phase equilibrium diagram for a pure substance on h-s plot with relevant	6M	CO5	L2
(b)	10 kg of water at 50° C is heat heated at a constant pressure of 11 bar until it	6M	CO5	L4
	internal energy and entropy.			
	(OR)			
(a)	What is degree of saturation? What are its limiting values?	4M	CO5	L2
(b)	Calculate the amount of heat removed per kg of dry air if the initial condition of air is 35° C, 75% RH and the final condition is 25° C, 60% RH	8M	CO5	L4
	(b) (a) (b)	 (b) Derive the expressions for availabilities of a close system and a steady flow open system UNIT-V (a) Draw phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines. (b) 10 kg of water at 50° C is heat heated at a constant pressure of 11 bar until it becomes superheated vapour at 250° C. Calculate the change in enthalpy, internal energy and entropy. (OR) (a) What is degree of saturation? What are its limiting values? (b) Calculate the amount of heat removed per kg of dry air if the initial condition of 	 (b) Derive the expressions for availabilities of a close system and a steady flow open system UNIT-V (a) Draw phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines. (b) 10 kg of water at 50° C is heat heated at a constant pressure of 11 bar until it becomes superheated vapour at 250° C. Calculate the change in enthalpy, internal energy and entropy. (OR) (a) What is degree of saturation? What are its limiting values? (b) Calculate the amount of heat removed per kg of dry air if the initial condition of 8M 	 (b) Derive the expressions for availabilities of a close system and a steady flow open system UNIT-V (a) Draw phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines. (b) 10 kg of water at 50° C is heat heated at a constant pressure of 11 bar until it becomes superheated vapour at 250° C. Calculate the change in enthalpy, internal energy and entropy. (OR) (a) What is degree of saturation? What are its limiting values? (b) Calculate the amount of heat removed per kg of dry air if the initial condition of 8M CO5

•

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Mechanics of Materials (ME)

	,	Cime: 3 Hours Mar			
	•	TITUX.	Mark	s: 60	
		Answer any FIVE Questions choosing one question from each un All questions carry Equal Marks.	ıit.		
			M	CO	BL
1	/- 3	UNIT - I			
1.	(a) (b)	State Hooke's law and write its expression A piece of material is subjected to three mutually perpendicular tensile stresses and the strains in the three directions are in the ratio 3:4:5. If the value of Poisson's ratio is 0.2857, find the ratio of the stresses and their values when the greatest stress is 90N/mm ²	6M 6M	CO1 CO1	L2 L3
		(OR)			
2.		A compound bar consists of a central steel strip 25 mm wide and 6.4 mm thick placed between two strips of brass each 25 mm wide and x mm thick. The strips are firmly fixed together to form a compound bar of rectangular section 25 mm wide and (2x + 6.4) mm thick. Determine: i) The thickness of the brass strips which will make the apparent modulus of	12M	CO1	L3
		i) The thickness of the brass strips which will make the apparent modulus of elasticity of compound bar 157 GN/m2.			
		 ii) The maximum axial pull the bar can then carry if the stress is not to exceed 157 MN/m2, in either the brass or the steel. Take Es= 207 GN/m2 and Eb= 114 GN/m2. 			
		UNIT – II			
3.	(a) (b)	Define Shear force and Bending moment A cantilever of length 3m carries a gradually varying load, zero at the free end to 1kN/m at the fixed end. Draw the S.F.D and B.M.D for the cantilever. (OR)	4M 8M	CO2 CO2	L1 L3
4.		Analyze the beam ABCD shown in figure. Draw the shear force and bending moment diagram, also calculate the maximum bending moment.	12M	CO2	L3
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		UNIT – III			
5.		Write the assumptions for theory of simple bending and derive the bending equation (OR)	12M	CO3	L2
6.		Derive an expression for section modulus of rectangular and circular sections UNIT – IV	12M	CO3	L3
7.		A cantilever AB of 2 m long is carrying a load of 20 KN at a free end and 30 KN at a distance of 1 m from free end. Find the slope and deflection at free end. Take $E = 200$ GPa & $I = 150 \times 10^6$ mm ⁴ .	12M	CO4	L3
8.		(OR) A hollow alloy tube 4 m long with external and internal diameter of 40 and 25 mm respectively was found to extent 4.8 mm of tensile load 60 KN. Find the buckling load for the tube with both ends pinned, also find safe load on the tube by taking FOS as 5.	12M	CO4	L3
9.	(a) (b)	UNIT-V Draw Mohr's circle when the component is subjected to state of pure shear. Derive an expression for the stresses on an oblique plane of a rectangular body, when the body is subjected simple shear stresses.	6M 6M	CO5 CO5	L2 L3
10.		(OR) A thin cylindrical pressure vessel of diameter 2.5m and thickness of 18mm is subjected to an internal pressure of 1.2N/mm ² . In addition, the vessel is also subjected	12M	CO5	L3

subjected to an internal pressure of 1.2N/mm². In addition, the vessel is also subjected to an axial tensile load of 2800kN. Determine the normal and shear stresses on a plane at an angle of 60 degrees to the axis of the vessel and also find the maximum shear

stress.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Special Functions and Complex Analysis (ECE)

Time: 3 Hours

Max. Marks: 60

			\mathbf{M}	CO	BL
		UNIT – I			
1.	(a)	Prove that $J_{-n}(x)=(-1)^nJ_n(x)$, n is an integer.	6M	CO1	L1
	(b)	Express $J_{3/2}(x)$ in terms of sine and cosine functions	6M	CO1	L2
		(OR)			
2.		Prove that $(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$	12M	CO1	L1
		UNIT – II			
3.		Show that $f(z) = \sqrt{ xy }$ is not analytic at origin even though it satisfies	12M	CO2	L2
		Cauchy -Riemann equations at origin.			
		(OR)			
4.	(a)	Find all values of k such that $f(z) = e^{x}(cosky + i sinky)$ is analytic.	6M	CO2	L3
	(b)	Show that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic	6M	CO2	L2
		UNIT – III			
5.		Find the bilinear transformation which maps the points $z=0$, 1, ∞ onto the points $w=-1$, -2, i.	12M	CO3	L3
		(OR)			
6.		Discuss the transformation $w = \cos z$.	12M	CO3	L3
		UNIT – IV			
7.		State and prove cauchy's integral formula	12M	CO4	L3
		(OR)			
8.	(a)	Evaluate $\oint_{c} \frac{\log z}{(z-1)^{5}} dz$, where c is the circle $ z-1 = \frac{1}{2}$ using Cauchy's integral	6 M	CO4	L4
		formula			
	(b)	Evaluate, using Cauchy's Integral Formula $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where c is the	6 M	CO4	L4
		circle $ z =3$.			
		UNIT-V			
9.	(a)	State and prove Cauchy's residue theorem.	6M	CO5	L5
	(b)	Evaluate $\oint_C \frac{2s^z}{z(z-3)} dz$ where 'c' is the circle $ z =2$ by residue theorem.	6M	CO5	L5
		(OR)			
10.		Show that $\int_0^{2\pi} \frac{d\theta}{\alpha \div b \cos \theta} = \frac{2\pi}{\sqrt{\alpha^2 - b^2}} (\alpha > b > 0)$ by method of Residues	12M	CO5	L3

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Signals and Systems (ECE)

Time: 3 Hours

Max. Marks: 60

		All questions carry Equal Marks.			
		•	M	CO	BL
		UNIT - I			
1.	(a)	What are the different types of Continuous time signals and explain it.	6M	CO1	L1
	(b)	What are the basic operations on signals? Illustrate with an Example.	6M	CO1	L2
		(OR)	43.6	CO1	¥ 1
2.	(a)	Define Energy and Power signals.	4M	CO1	L1 L5
	(b)	Determine the Exponential Fourier series representation of the wave form	8M	COI	LJ
		shown in figure 1. Also Sketch its spectrum.			
		-मिता -अता -थेता -ता ० व्या अता वित			
_		UNIT – II	4M	CO2	L1
3.	(a)	State Dirchlet's conditions for the existence of Fourier transform. Find Fourier transform of Unit impulse ,Unit Step and rectangular functions	8M	CO2	L1
	(b)	(OR)	0 1.1		
4.	(a)	Explain about Fourier Transform for periodic signals.	6M	CO ₂	L2
**	(b)	Find Fourier Transform of $x(t) = \sum_{n=-\infty}^{\infty} \partial(t-nT)$	6M	CO ₂	L1
	()	UNIT-III		~~~	~ =
5.		Explain the process for Sampling Theorem for Band limited signals with neat sketch and necessary equations	12M	CO3	L5
		(OR)			
6.		Find the convolution integral of $x(t)$ and $h(t)$, and sketch the convolved signal: $x(t) = (t-1)\{u(t-1) + u(t-3)\}$ and $h(t) = [u(t+1) - 2u(t-2)]$	12M	CO3	L1
		UNIT – IV			
7.		What do you mean by impulse response of an LTI System? Deduce the equation for the response of an LTI System, if the input sequence x(n) and the	12M	CO4	L4
		impulse response are given.			
		(OR)	1234	COA	T 4
8.		Let the system function of an LTI system be 1/(jw+2). What is the output of the system for the input (0.8) ^t u(t)?	12111	CO4	L
		UNIT-V			
9.		<u> </u>	12M	CO5	L5
		Find the Inverse Laplace Transform of $G(S) = (S+3)(S2+4S+5)$ for all possible			
		ROC.			
		(OR)			
10.		Solve the following difference equation using unilateral z-transform: $y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = x(n)$, for $n \ge 0$, with initial conditions $y(-1) = 4$, $x(n) = \left(\frac{1}{4}\right)^n u(n)$.	12M	CO5	L6
		N 17			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Digital System Design (ECE)

Time: 3 Hours

Max. Marks: 60

		quiblions buily Equal man ho.			
		UNIT – I	M	CO	BL
1.	(a)	Convert the following numbers (i) (4021.2) ₅ to base 2 (ii) (FAFA.B) ₁₆ to base 10 (iii) (153.513) ₁₀ to base 8	6M	CO1	L1
	(b)	Represent "COLLEGE" as a stream of ASCII characters. (OR)	6M	CO1	LI
2.	(a)	Add the following BCD numbers (i) 1000 and 0101 (ii) 00011001 and 00011000	6M	CO1	L2
	(b)	Perform the subtraction using 1's complement and 2's complement methods: (i) 11010-10000 (ii) 11010-1101 UNIT-II	6M	CO1	L2
3.	(a)	Simplify the following expressions using Boolean algebra (i) $Y=(A+B)(A+\overline{C})(B+\overline{C})$ (ii) $F(A,B,C)=\overline{A}B+B\overline{C}+BC+A\overline{B}\overline{C}$	6M	CO2	L3
	(b)	Explain about TTL in detail with diagram.	6M	CO2	L4
4.	(a)	(OR) Express the given Boolean functions in standard SOP form (i) F=A+BC (ii) F=AC+AB+ABC+BC	6M	CO2	L5
	(b)	Draw the multilevel NOR circuit for the following expression W=(X+Y+Z)+XYZ	6M	CO2	L4
5.	(a)	VNIT – III Realize the following Boolean expression using a 8×1 multiplexer Y=ĀBC+ĀBC+ABC	6M	CO3	L6
	(b)	Construct 3×8 decoder using logic gates and truth table. (OR)	6M	CO3	L6
6.	(a) (b)	Design a 2-bit magnitude comparator using logic diagram and explain. What is Hazard in switching circuits? Explain the design of Hazard free switching circuit with an example.		CO3	L6 L3
		UNIT – IV			
7.	(a) (b)	Draw the logic diagram of master slave JK flip flop, explain in detail. Differentiate synchronous and asynchronous sequential circuits. (OR)	6M 6M	CO4 CO4	L4 L2
8.	(a) (b)	Convert JK flip flop to SR flip flop. Draw and explain the logic diagram of a 4-bit binary ripple counter using positive edge triggering.	6M 6M	CO4 CO4	L6 L5
•	(-)	UNIT-V		~~=	
9.	(a)	Implement the following using PLA $F_1(A,B,C)=\Sigma m(3,5,6,7), F_2(A,B,C)=\Sigma m(0,2,4,7)$	6M	CO5	L6
	(b)	Differentiate RAM and ROM. (OR)	6M	CO5	L5
10.	(a)	Implement the following function using ROM $F(A,B,C,D)=\Sigma m(0,1,2,4,7,9,11,13)$	6M	CO5	L6
	(b)	Give the comparison between PROM, PLA, PAL.	6M	CO5	L5

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Analog Circuits (ECE)

Time: 3 Hours

Max. Marks: 60

			M	CO	BL
1	(a)	UNIT - I		~~.	
1.	(a)	Draw the circuit of Darlington pair and derive the expression for overall current gain.	6M	CO1	L2
	(b)	Derive expression for CMRR of BJT differential pair. (OR)	6M	CO1	L2
2.	(a) (b)	Discuss the effect of cascading amplifier stages on voltage gain and bandwidth. Explain the small signal operation of MOS differential pair. UNIT – II	6M 6M	CO1	L2 L2
3.	(a)	Draw hybrid π equivalent circuit of CE amplifier and discuss the significance of each component.	6M	CO2	L2
	(b)	The following h parameters are known for a given transistor at $I_C = 10\text{mA}$, $V_{CE} = 10\text{V}$, and at room temperature. At the same operating point, $f_T = 50\text{MHz}$ and $C_{ob} = 3\text{pF}$, compute values of all hybrid π parameters.	6M	CO2	L3
4.	(a)	Obtain expression for f_{β} of a CE amplifier at high frequencies and derive a	6M	CO2	L2
	()	relationship between f_{β} and f_{T} .	OLVE	CO2	س.
	(b)	Explain CG amplifier at high frequencies.	6M	CO2	L2
_	(-)	UNIT – III	63.5	COA	т о
5.	(a) (b)	Explain the effect of negative feedback on various parameters of amplifier. Sketch the diagram of RC phase shift oscillator and explain how Barkhausen	6M 6M	CO3	L2 L2
	(0)	criterion is satisfied to obtain oscillations.	OITE	COS	<u>112</u>
		(OR)			
6.	(a)	With the help of circuit diagram, explain the operation of Hartley oscillator and derive expression for output frequency.	6M	CO3	L2
	(b)	Discuss the amplitude and frequency stability of oscillators. UNIT - IV	6M	CO3	L2
7.	(a)	With the help of circuit diagram and mathematical analysis explain how even harmonics are eliminated in push-pull amplifier.	6M	CO4	L2
	(b)	Prove that maximum efficiency of Transformer coupled class A power amplifier is 50%.	6M	CO4	L2
		(OR)			
8.	(a)	Bring out the differences between voltage amplifiers and power amplifiers	6M		L4
	(b)	Sketch the diagram of single tuned amplifier and explain its operation UNIT-V	6M	CO4	L6
9.	(a)	Explain the operation of Schmitt trigger circuit using BJT.	6M	CO5	L2
	(b)	Describe how a pulse can be generated from a collector coupled one shot. (OR)	6M	CO5	L2
10.	(a)	Write about the general characteristics of a time base signal.	6M	CO5	L2
	(b)	Explain the operation of Bootstrap time base generator.	6M	CO5	L2

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023 SUB: Network Theory (ECE)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

UNIT - I

CO BLM

Define the following: (i) Vertex (ii) Edge (iii) basic cut set 1.

CO₁ L1**6M**

Determine the element node incidence matrix for the given graph.

CO₁ L3 6M

Determine the loop currents in the given network shown using loop current 6M CO₁ L32. method.

Explain the procedure to obtain dual network.

L26M CO₁

UNIT – II

Explain the transient response of R-L series circuit for DC excitation. 3.

6M CO₂ L2 CO₂

6M

L3

For the circuit shown in Fig, determine the current delivered by the source when the switch is closed at t=0, using Laplace transformation. Assume there is no initial charge on the capacitor and no initial current though the inductor.

(OR)

Explain the circuit element models and initial conditions. 4.

CO₂ L26M

Find voltage $v_C(t)$ and current $i_C(t)$ for $t \ge 0$ for the circuit shown in Fig.

C_O2 L36M

UNIT - III

- 5. (a) Explain the transient response of R-L series circuit for AC excitation. 6M CO3 L2
 - (b) Determine the current i(t) along capacitor in the circuit shown in figure. 6M CO3 L3
 Assume that the initial conditions are zero.

(OR)

6. (a) Explain the resonance of RLC series circuit.

6M CO3 L2

CO₃

L3

6M

(b) Two coils, one of $R_1 = 0.51 \ \Omega$, $L_1 = 32 \ \text{mH}$, the other of $R_2 = 1.3 \ \Omega$ and $L_2 = 15 \ \text{mH}$ and two capacitors of 25 μF and 62 μF are all in series with a resistance of 0.24 Ω . Determine the following for this circuit. (i) Resonance frequency (ii) Q of each coil.

UNIT-IV

7. Determine the Z and Transmission parameters for the resistive network shown 12M CO4 L3 in figure below:

8. The impedance parameters of a two-port network are Z_{11} = 6 Ω , Z_{22} =4 Ω , 12M CO4 L3 Z_{12} = Z_{21} =3 Ω . Compute the Y parameters and ABCD parameters and write the describing equations.

UNIT-V

- 9. (a) Explain the properties of positive real function.
- 6M CO5 L2

(b) Determine if $p(s) = s^4 + 3s^3 + 5s^2 + 5s + 2$ is a Hurwitz polynomial. (OR)

6M CO5 L3

Explain the RC network synthesis.

10.

12M CO5 L2

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Universal Human Values (EEE, ECE & AI ML)

Max. Marks: 60

	irks:	60			
		Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.			
		An questions carry Equal 1.22.	M	CO	\mathbf{BL}
			TAT		
		UNIT - I	6N/I	CO1	L4
1.	(a)	Integrity, Trustworthiness and Respect for others are driving force to live	OTAT	COI	T-1-1
	()	peacefully – Discuss.			LI
	(b)	Write a short note on Work Ethics-Service.	OTAT	COI	LIX
	(~)	(OR)	C3.6	COI	L5
2.	(a)	Define Empathy and how it works in Dersonal and processional.		CO1	L2
	(b)	Illustrate the aspect of Spirituality at Work place and Corporate Excellence.	6M	CO1	1.2
	(~)	13N1T 11	C3 5	CO1	L6
3.	(a)	Write a note on about the importance of respecting the professions of all people.	6M	CO2	110
٥.	(4)	Make a list of 10 professions for today's youth other than those in the medical			
		and Engineering field	∠B. #	CO3	Li
	(b)	What is Moral dilemma? List out various situations when moral dilemmas arise.	OIAT	CO2	Li
	(~)	(OR)	C 13 /	CO2	L3
4.	(a)	'Personal life leads to Professional life' - Elucidate.	6M	CO2	L2
••	(b)	Explain Kohlberg's theory on moral autonomy.	OIAT	COZ	LIA
	(~)	TJNY - 111	CNT	CO3	L5
5.	(a)	What do you mean by competence in professional ethics? Elaborate with	6M	CO3	110
٠.	()	1og	6B#	CO3	L2
	(b)	Define the safety and risk assessment and list out few factors to reduce risks.	OTAT	COS	744
	(~)	(OR)	6M	CO3	L1
6.	(a)	What are the factors that influence the risk benefit analysis?	6M		L4
••	(b)	How does engineering disaster occur? Explain briefly about Chernobyl case	OTAT	003	#3-#
	(~)	study.			
		**************************************	CB #	COA	1.2
7.	(a)	Natural acceptance is innate, invariant and universal. Explain this statement	OTAT	COT	,,,,,
	()				
	(b)	with an example. Mutual fulfillment in human relationships is something we want, we aspire for,	Olar	C04	
	(~)	Justify the statement.			
		(011)	67M	- CO4	T.1
8.	(a)	What is value education? Why there is a need of value education? What are the	()141		
-	()	hasic guidelines for value education?		(CO 4	
	(b)	Define Self exploration. What is the content of Self exploration?	OTAY	(00-	
	(~)	11NFT-V	6M	CO5	L 6
9.	(a)	What is meaning of Justice in human relationships? How does it follow from	L OTA:		, 130
	()			T CO4	14
	(b)	tice the intention and commetence when you have to judge	. O14.		,
	()	the other. Why is it important?			
			۸N.	T CO	5 L2
10.	(a)	Bring out the differences and similarities between a human being and an animal	. 011		
7.01	(**)	co		A CO	
	(b	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O11		
	(D	, —···1			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Business Economics and Accounting for Engineers (CEE)

Max. Marks: 60 Time: 3 Hours

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

		F	ra duesnon:	s carry Equal Mark	72.	M	CO	BL
				UNIT - I				
1.	(a)	Discuss the scope of mana	agerial econor	= **		6M	CO1	L6
••	(b)	Define Law of demand an	d state the ex	ceptions		6M	CO1	L1
	(2)			(OR)				
2.	(a)	List out the factors govern	ing demand i	forecasting.		6M	CO1	L1
	(b)	Discuss the role and respo	nsibilities of	managerial economist	•	6M	CO1	L6
	` ,			UNIT – II		C3.4	CO3	то
3.	(a)	Explain various cost conc	epts used in c	lecision making.	tottable	6M	CO2 CO2	L2 L1
	(b)	Define production function input.	on and explai	a production function	with one variable	6M	COZ	TrI
		1		(OR)			~~-	
4.	(a)	Discuss managerial signif	icance of bre	ak even analysis.		6M	CO2	L6
	(b)	From the following inform (i) P/V Ratio (ii) Fixed		re required to comput	e	6M	CO2	L5
		(iii) Sales volume to e		Rs 1 60 000				
		Sales (III)	s. 4,00,000	16. 1,00,000.				
		Profit = R						
			cost = 70%					
				UNIT – III				
5.	(a)	Define Perfect competition	on and explain	n the features of perfec	ct competition.	6M	CO3	L1
	(b)	What are objectives and p	policies of pri	cing?		6M	CO3	L1
	• •			(OR)		1035	CO2	L2
6.		Explain various Methods	of Pricing w	ith suitable examples?	•	12M	CO3	L.4
				UNIT – IV		6M	CO4	L2
7.	(a)	Briefly explain the users	of accounting	g information	nte for the year	6M	CO4	L5
	(b)	From the following trial	baiance prepa	ire trading, PAL accou	ills for the year	OLIT	00.	2
		ending 31/03/2016	Day A see 6	Particulars	Cr.Amt.			
		Particulars	Dr.Amt.	Capital	8,500			
		Machinery Charles	3,320 2920	Sales	23,812			
		Opening stock	2920	Deturne outwards	582			

Particulars	Dr.Amt.	Particulars	Cr.Amt.
Machinery	3,320	Capital	8,500
Opening stock	2920	Sales	23,812
Purchases	20,724	Returns outwards	582
Returns inwards	420	Bank overdraft	640
Sundry expenses	880	Creditors	2000
Factory rent	640	Bills payable	570
Bad debts	344	Discount Received	120
Debtors	6,400		
Cash in hand	96		
Bills receivable	480		
	36,224		36,224

Adjustments: (i) Closing stock was valued @ 3,400,

(ii) Outstanding rent @ 80, (iii) Depreciation on machinery @ 10% per annum

		(OR)			
Q	(a)	Explain the need for accounting in the present era?	6M	CO4	L2
٥.			63.6	CO4	Τ.6
	(h)	Discuss about double entry book keeping?	OIVL	CU4	LU

UNIT-V

9.

6M ĊO5

CO₅

6M

L.

(1) Write about various types of liquidity ratios?(b) Calculate the different liquidity ratios (any TWO) from the following particulars:

Particulars	Amount
Inventory	1,50,000
Cash	50,000
Sundry Debtors	3,00,000
Creditors	3,50,000
Bills Receivable	30,000
Bank Overdraft	30,000

(OR)

Discuss in detail about different profitability ratios with suitable examples? 10.

12M CO5 L

· K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023 SUB: Advanced Data Structures (CSE)

Max. Marks: 60 Time: 3 Hours Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks. M

		An questions carry Equal marks.	M	CO	\mathbf{BL}
1.	(a) (b)	UNIT - I What is an array list? Explain its implementation and advantages & disadvantages. What is Stack? Explain the implementation of stack using single linked list.	M M	CO1	L2 L2
2.	(a) (b)	(OR) Explain the three cases of insertion operation on single list, with neat sketch. What are the different applications of stack? Explain any one application in detail UNIT – II	6M 6M	CO1	L2 L2
3.	(a) (b)	What is Queue? Explain the implementation of Queue using array. What is binary tree? Explain the representation of Binary tree using arrays. Is it advantageous or disadvantageous? Justify with an example.	6M 6M	CO2 CO2	L2 L2
4.	(a)	(OR) What is circular queue? Explain the enqueue and dequeue operations on circular	6M	CO2	L2
	(b)	queues. Write a pseudo code for enqueue and dequeue operations on circular queues.	6M	CO2	L1
5.	(a) (b)	UNIT – III Explain the FOUR rotations in insertion operation on an AVL tree. Explain three traversals on the below given binary tree.	6M 6M	CO3	L2 L2

(OR) What is Heap and explain its properties. Construct the Min Heap for the following CO₃ **L6 6M** 6. (a) keys: 12, 34, 56, 78, 90, 45, 10, 98, 67, 79, 33, 22, 8, 54, 5, 76 L2What is the binary search tree? Explain and write an algorithm for deletion of an CO₃ **6M** (b) element. UNIT-IV

L2 CO4 Explain the quick sort algorithm with an example. 6M 7. (a) L1**6M** CO₄ Write an algorithm for quick sort. (b) (OR)

L5 What is minimum cost spanning tree. For the given graph, Find the MST using CO₄ **6M** (a) 8. Kruskal's algorithm.

(h)	(b)	Write an algorithm for BFS and DFS traversal and Explain.	6M	CO4	Ll
		UNII-V	6M	CO5	L6
9.	(a)	Construct 2-3 tree for the following keys:	0147	COS	
	()	12 24 67 89 43 76 98 90 12 33 65 87 78, 23, 8, 77			T A

12, 34, 67, 89, 43, 76, 98, 90, 12, 33, 65, 87, 78, 23, 8, 77 L2 CO5 6M (b) Explain the different hah functions with examples. L2CO₅ 12M

What is skip list explain the operations on skip list with neat diagram 10.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Formal Languages and Automata Theory (CSE)

Time: 3 Hours Max. Marks: 60

		All questions carry Equal Marks.			
			M	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	What is the finite state machine? Define finite automata and discuss the	6M	CO1	L1
1.	(a)	representation of finite automata.		-	
	<i>(</i> b)	Draw a DFA for the language accepting strings ending with 'abba' over input	6M	CO2	L2
	(b)	alphabets $\Sigma = \{a, b\}$	V2		
		(OR)			
•	(a)	Construct DFA for the NFA-E where p is start state and r is final state.	7M	CO1	L2
2.	(a)	E a b c			
	<i>~</i> `		5M	CO1	L2
	(b)	Discuss the method for converting the Moore machine to Mealy machine.	2111	COI	1.12
_		UNIT - II	6M	CO2	L2
3.	(a)	Show that if L is a regular language and F is a finite language, the LUF, L∩F, and	OLYA	COZ	1111
		L-F are regular?	6M	CO2	L2
	(b)	Show that if L is a non-regular language and F is a finite language then F is non-	OTAT	COZ	, LIM
		regular.			
		(OR)	6M	CO2	L2
4.	(a)	Demonstrate Pumping lemma of regular sets.	6M	CO1	L1
	(b)	What are the applications of regular expressions and finite automaton?	OLVA	COI	242
_		UNIT – III	6M	CO3	L3
5.	(a)	Explain in detail about Chomsky normal form with suitable Example.	6M	CO3	L3
	(p)	Eliminate unit productions from the following grammar:	ULTA	000	2.10
		S→A bb.			
		$A \rightarrow B a$.			
		$B \rightarrow S a.$ (OR)			
_		Explain the procedure of converting the given CFG to Greibach Normal	6M	CO3	L3
6.	(a)	Explain the procedure of converting the given of the Green from the procedure of converting the given of the Green from the procedure of converting the given of the Green from the procedure of converting the given of the Green from the Green from the given of the Green from the given of the Green from the Green	02.2	• • • • • • • • • • • • • • • • • • • •	
	<i>a</i> .s	Form(GNF) with suitable example. Write the procedure for Eliminating Unit productions in the given grammar.	6M	CO3	L2
	(b)	UNIT – IV	0,1,2		
_	7-5		6M	CO4	L3
7.		Construct a PDA that recognizes balanced parentheses. Construct a PDA that recognizes strings of type a ⁱ ble ^{i+j} .	6M	CO4	L3
	(b)	(OR)	02.2		
	(-)	Construct a PDA that accepts language that generates the following grammar.	6M	CO4	L3
8.	(a)	S -> aB			
		· · · · · · · · · · · · · · · · · ·			
		$B \rightarrow bA/b$			
		$A \rightarrow aB$	6M	CO4	L2
	(b)	Show that the language $L=\{a^ib^ic^i / i \ge 1\}$ is not context free language.	01/1	004	
_		UNIT-V	6M	CO5	L2
9.	(a)	Give the properties of Recursively languages and Recursively enumerable	OLIA		
		languages.	6M	CO5	L3
	(b)	Show that it is undecidable whether an arbitrary CFG is ambiguous. (Assume that	OA1#		
		PCP is undecidable). (OR)			
			6M	CO5	L3
10.	(a)	Explain any four variations of Turing machines.	6M	CO5	L4
	(b)	Design a Turing machine for multiplying two numbers using subroutine		-	

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Object Oriented Programming through Java (CSE)

Time: 3 Hours

Max. Marks: 60

			M	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	List and explain Java Buzzwords.	6M	CO1	L3
χ.	(b)	What are constructors? Explain the different types of constructors	6M	CO1	L2
	(0)	(OR)			
2.	(a)	The Object-Oriented thinking is analogous to viewing real world objects.	6M	CO1	L3
<i>.</i>	(a)	Justify the statement with proper examples			_ ,
	(b)	Discuss in brief about overloading and overriding concepts in OOP.	6M	CO1	L4
		UNIT – II			
3.	(a)	List and explain the benefits of Inheritance and Polymorphism.	6M	CO2	L3
0.	(b)	What is a package? Explain the process of creating and using a package in	6M	CO ₂	L2
	(0)	Java.	. .		
	_	(OR)	403#	CO1	L4
4.		Discuss the variables in interface and extending interfaces.	12M	CO2	IL.º₽
		UNIT – III	CN II	COZ	L3
5.	(a)	Define thread. Draw and explain thread life cycle.	6M	CO3	
	(b)	What happens when there is no suitable try block to handle exception? Explain	6M	CO3	L2
		(OR)			
6.	(a)	Explain the usage of two keywords in exception handling	6M	CO3	L4
0.	(b)	List and explain the Benefits of Exception Handling	6M	CO3	L3
	(10)	UNIT – IV			
7.		Explain the following:	12M	CO4	L2
7.		(i) Event Listeners (ii) Delegation event model			
		(OR)	1035	CO4	L3
8.		List and explain the Layout manager types.	12171	CO4	LS
		UNIT-V	CB #	CO.5	Υn
9.	(a)	Write a java applet that demonstrates the use of check boxes.	6M	CO5	L2
	(b)	Explain about the life cycle and architecture of an applet	6M	CO5	L3
	. •	(OR)		~~"	7.3
		•			
10.	(a)	With a programming example, explain about passing parameters to applets. Differentiate between the AWT components and Swing components.	6M 6M		

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Database Management Systems (CSE)

Time: 3 Hours

Max. Marks: 60

			M	CO	\mathbf{BL}
		UNIT - I			
1.		Discuss in detail about Database Architecture with neat diagram?	12M	CO1	L6
1.		(OR)			
2.	(a)	Explain about Constraints in ER Model?	6M	CO1	L5
Lie	(a)	Write a short notes on Entity Relationship Diagrams with suitable examples?	6M	CO1	L2
	(b)	UNIT - II			
2	(a)	What are the keys in relational model? give suitable examples?	6M	CO2	L4
3.	(a)	Write a short notes on Database Languages.	6M	CO ₂	L4
	(b)	(OR)			
À	(a)	What are the Fundamental Relational Algebra Operations in relational mode?	6M	CO ₂	L4
4.	(a)	How Modification of Database in relational model?	6M	CO2	L4
	(b)	UNIT – III			
_	(a)	What are the Basic Structure of SQL Queries?	6M	CO3	L 4
5.	(a)	Discuss in detail about Aggregate Functions in SQL with examples	6M	CO ₃	L4
	(b)	(OR)			
_	(0)	Write a short notes on Tuple Relational Calculus, Domain Relational calculus	6M	CO ₃	L4
6.	(a)	What are the uses of Functions and Procedures? how its related to Database	6M	CO3	L4
	(b)	UNIT - IV			
Ħ	(0)	Explain in detail about 1NF & 2NF? Implement on Student relation.	6M	CO4	L5
7.	(a)	Write a short notes on	6M	CO4	L2
	(b)	(i) 3NF (ii) BCNF (iii) 4NF			
		(OR)			
8.	(0)	How to implement joining dependencies in database?	6M	CO4	L4
0.	(a)	What is mean by Lossless decomposition?	6M	CO4	L2
	(b)	UNIT-V			
0		How transactions are done in DBMS? What are the transaction states in	12M	CO5	L4
9.		DBMS?			
		(OR)			
10	(-N	Write about Lock-Based Protocols and Timestamp-Based Protocols	6M	CO5	L2
10.	(a)	Discuss in detail about Log based recovery	6M	CO5	L6
	(b)	Discuss in detail about nod cases 1-1-2			

30

20

35

В

0.02

0.04

0.03

¹ K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023 SUB: Probability & Optimization (AI&ML)

Time: 3 Hours Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

		Answer any FIVE Questions choosing one question from each un All questions carry Equal Marks.	LL.		
		-	M	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	A,B,C are aiming to shoot a balloon. A will succeed 4 times out of 5 attempts. The chance of B to shoot the balloon is 3 out of 4 and that of C is 2 out of 3. If the three aim the balloon simultaneously, then estimate the probability that at least two of them hit the balloon.	6M	CO1	L5
	(b)	In a state election in the year 2020 there were three major parties X,Y,Z fighting for the claim of Chief ministership. The chances of winning the election of the 3 parties are in the ratio 1:2:3 respectively. The probability that the party X is selected, will introduce total arrack prohibition in thr state is $\frac{1}{2}$. The probability that the party Y is	6M	CO1	L2
		selected, will introduce total arrack prohibition in thr state is $\frac{1}{4}$ and the probability			
		that the party Z is selected, will introduce total arrack prohibition in thr state is $\frac{3}{4}$.		-	
		What is the probability that there will be a total prohibition in the state after the election in year 2020.			
2.		(OR) In a bolt factory machines A,B,C manufacture 20%, 30% and 50% of the total of their output and 6%, 3% and 2% are defective. A bolt is drawn at random and found to be defective. Find the probabilities that it is manufactured from (i) Machine A, (ii) Machine B, (iii) Machine C.	12M	CO1	L1
3.		UNIT - II Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday. The following is the probability distribution of X.	12M	CO2	L5
		$\begin{array}{ c cccccccccccccccccccccccccccccccccc$			
		Determine the mean, variance and standard deviation of X. (OR)			
4.		and the second of the second o	12M	CO2	L5
		Determine (i) k (ii) mean and (iii) variance of X.			
		UNIT - HI			
5.		Explain the methods and scientific methods in Operations research.	12M	CO3	L5
6.	(a) (b)	(OR) Operations research is a tool for Decision support system. Explain What are the limitations of Operations research?	6M 6M	CO3 CO3	L5 L3
		UNIT – IV	Oliv	COS	Lo
7.	(a)	Three grades of coal A,B and C contain ash and phosphorous as impurities. In a particular industrial process a fuel obtained by blending the above grades containing not more than 25% ash and 0.03% phosphorous is required. The maximum demand of the fuel is 100 tons. Percentage impurities and costs of the various grades of coal are shown below. Assuming that there is an unlimited supply of each grade of coal and there is no loss in blending, develop the blending problem to minimize the cost.	6M	CO4	L3
		Coal grade % Ash % Phosphorous Cost per ton in Rs,			
		1 20 002 240			

240

300

280

(b) Solve the following LPP using graphical method.

Maximize $z = 5x_1 + 3x_2$

Subject to constraints $3x_1 + 5x_2 \le 15$

$$5x_1 + 2x_2 \le 10$$

$$x_1 \ge 0; \ x_2 \ge 0$$

(OR)

8. Solve the given linear programming problem by using Simplex method.

12M CO4 L3

CO4

Maximize $z = 3x_1 + 5x_2 + 4x_3$

Subject to the constraints: $2x_1 + 3x_2 \le 8$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

$$x_1\geq 0; x_2\geq 0; x_3\geq 0$$

UNIT-V

9. Determine an initial basic feasible solution to the following transportation problem 12M

M CO5 L5

L5

by using (i) North-West corner rule (ii) Least cost entry method

Demand					m . 1
Supply	D1	D2	D3	D4	Total
SI	6	4	1	5	14
S2	8	9	2	7	16
S3	4	3	6	2	5
Total	6	10	15	4	

(OR)

10. Determine the initial basic feasible solution to the following transportation problem 12M CO5

using Vogel's approximation method.

ising vogors	Destinati	Supply				
Source	D1	D2	D3	D4	Suppry	
SI	21	32	52	12	7000	
S2	72:	32	42	62	9000	
S3	42	10	72	22	18000	
Demand	5000	8000	7000	14000		

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023

SUB: Discrete Mathematics & Graph Theory (AI&ML)

Time: 3 Hours Max. Marks: 60

		All questions carry Equal Marks.			
			M	CO	BL
		UNIT - I			
1.	(a)		6M	CO1	L2
	(b)		6M	CO1	L2
		(OR)			
2.	(a)		6M	CO1	L2
	(b)	Show that these statements to a valid arguments	6M	CO1	L2
	(D)	If there was a ball game then travelling was difficult.			,
		If they arrive on time then travelling was not difficult.			
		They arrive on time.			
		Therefore there was no ball game.			
		UNIT – II			
3.	(a)	What are the Equivalence and Compatibility relations? Give an example for each.	6M	CO2	L1
	(b)		6M	CO ₂	L2
	(2)	if x divides y .Draw the Hasse diagram.			
		(OR)			
4.	(a)		6M	CO2	L3
	()	if and only if x-y is a multiple of 5. Verify that R is an equivalence relation.			
	(b)	Let A= {1, 2, 3, 4, 6, 8, 12}. On A define the partial order R by aRb if and only	6M	CO ₂	L2
•	` '	if alb. (i) Draw the Hasse diagram for R.			
		(ii) Write down the relation matrix for R.			
		UNIT – III			
5.	(a)	In how many ways can 6 men and 6 women be seated in a row	6M	CO3	L3
	•	(i) If any person may sit next to any other?			
		(ii) If men and women must occupy alternate seats?			
	(b)	A Certain question paper contains two parts A and B each containing 4	6M	CO ₃	L3
	` '	questions. How many different ways a student can answer 5 questions by			
		selecting at least 2 questions from each part?			
		(OR)			
6.	(a)	A Committee of eight is to be formed from 16 Men and 10 Women.	6M	CO3	L3
		In how many ways can the Committee be formed?			
		(i) There are no restrictions. (ii) There should be an even number of women.			
	(b)	A Certain question paper contains three parts A, B, C with four questions in part	6M	CO ₃	L3
	• •	A. five questions in part B and six questions in part C.It is required to answer			
		seven questions selecting at least two questions from each part. In how many			
		different ways can a student select his seven questions for answering?			
		UNIT – IV			
7.	(a)	Solve the recurrence relation a_n - $3a_{n-1}=5\times3^n$. for $n\geq1$, given that $a_0=2$.	6M		L4
	(b)	Find a recurrence relation and the initial condition for the sequence 2, 10, 50, 250,	6M	CO4	L3
		(OD)			

8.	(a)	Find a_{12} if $a_{n+1}^2 = 5a_n^2$, where $a_n > 0$ for $n \ge 0$, given that $a_0 = 2$.	6M	CO4	L3
	(b)	Find the recurrence relation and the initial conditions for the sequence	6M	CO4	L3
		0, 2, 6, 12, 20, 30, 42,			
		UNIT-V			
9.	(a)	Define terms binary tree, spanning tree and planar graphs .Explain with an examples.	6M	CO5	L1
	(b)	Explain DFS algorithm to finding a spanning tree with an example. (OR)	6M	CO5	L2
10.	(a)	Explain Four-Color problem with an example.	6M	CO5	L2
	(b)	Generate basic rules for constructing Hamiltonian paths and cycle. Also give an example .	6M	CO5	L5

.

•

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Digital Systems and Computer Organization (AI&ML)

Max. Marks: 60 Time: 3 Hours

			Marks	CO	BL
		UNIT - I			
1.	(a)	Define Binary Number? Explain the 2's Complement with example.	6M	COI	L2
2.0	(b)	List out the Properties of Boolean Algebra? Explain each.	6M	CO1	L4
	(0)	(OR)			
2.	(a)	Design Five-variable map with example.	6M	CO1	L6
	(b)	Explain Product of Sum simplification with example.	6 M	CO1	L2
	(-)	UNIT – II		~~~	T /
3.	(a)	Construct 4-bit Binary adder-subtractor and explain in detail.	6M	CO2	L6
	(b)	Describe in detail about 8*1 decoder.	6 M	CO ₂	L2
	•	(OR)	<i>(</i> 3.6	CO1	L6
4.	(a)	Construct the Boolean function by using multiplexer with example.	6M	CO2	Lo L3
	(b)	What is sequential circuit? Construct the flip flops.	6M	CO2	כע
		UNIT – III	6M	CO3	L2
5.	(a)	Describe in detail about the shift registers.	6M	CO3	L2
	(b)	Explain about the ripple counters.	OTAT	CO3	طريا.
		(OR)	6M	CO3	L4
6.	(a)	List out the computer types? Explain.	6M	CO3	L6
	(b)	Discuss about Functional units.	01/1	003	20
		UNIT – IV	6M	CO4	L3
7.	(a)	Demonstrate about Instruction cycle.	6M	CO4	L2
	(b)	Define Memory? Explain Memory Reference Instructions.	02.12		
		(OR)	6M	CO4	L2
8.	(a)	Explain Control memory in detail.	6M	CO4	L6
	(b)	Design the control unit? Explain. UNIT-V			
_			6M	C05	L1
9.	(a)	What is main memory? Explain in detail. Describe about virtual memory.	6M	C05	L2
	(b)	Describe about virtual memory. (OR)			
40	(-)	What is the input or output interfaces? Explain it.	6M	CO5	L2
10.	(a)	Discuss about priority interrupt.	6M	CO5	L6
	(b)	Discuss about bitotich interrabe.			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March – 2023 SUB: Introduction to Artificial Intelligence (AI&ML)

Time: 3 Hours

Max. Marks: 60

			M	CO	BL
		UNIT - I			
1.	(a)	What are the different AI approaches discuss them in brief.	6M	CO1	L1
	(b)	List applications of AI explain them.	6M	CO1	L3
		(OR)			
2.		Illustrate AI technique with an example	12M	CO ₁	L3
		UNIT – II			
3.		How to defining problem as a state space search explain with a suitable example	12M	CO2	L2
		(OR)			
4.	(a)	Explain why problem formulation must follow goal formulation	6M	CO2	L2
	(b)	Discuss Tic-Tac-Toe with an example	6 M	CO2	L2
		UNIT – III			
5.	(a)	Explain Breath First Search in detail with a suitable example	6M	CO3	L2
	(b)	Discuss about problem reduction	6M	CO ₃	L2
		(OR)			
6.		Demonstrate how AO* algorithm is used for problem reduction with a suitable example.	12M	CO3	L4
		UNIT – IV			
7.	(a)	What are the various knowledge representation issues discuss with solutions	6M	CO4	L2
	(b)	Discuss about various approaches and properties of knowledge representation	6M	CO4	L2
		(OR)			•
8.		Explain in detail about declarative and procedural knowledge. UNIT-V	12M	CO4	L2
9.		What are the different applications of fuzzy logic system? Explain in detail with any one example.	12M	CO5	L3
		(OR)			
10.	(a)	Discuss about types and applications of FLCs.	6M	CO5	L2
	(b)	Explain about fuzzy control system	6 M	CO5	L2

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA B. Tech. III Semester (R20UG) Regular & Supple. Examinations of March - 2023

SUB: Universal Human Values (EEE, ECE & AI ML)

Max. Marks: 60 Time: 3 Hours Answer any FIVE Questions choosing one question from each unit. All questions carry Equal Marks.

All questions carry Equal Marks.								
		-	M	CO	BL			
		UNIT - I	CN II	CO1	L4			
1.	(a)	Integrity, Trustworthiness and Respect for others are driving force to live	6M	CO1)L144			
	<i>(</i> 1-1)	peacefully - Discuss. Write a short note on Work Ethics-Service.	6M	CO1	L1			
	(b)	(OR)						
2.	(a)	Define Empathy and how it works in personal and professional.	•	CO1	L5			
۵.	(b)	Illustrate the aspect of Spirituality at Work place and Corporate Excellence.	6M	CO1	L2			
	(-)	$\mathbf{UNIT} - \mathbf{II}$	CB.5	CO2	L6			
3.	(a)	Write a note on about the importance of respecting the professions of all people.	O1VI	COZ	LU			
		Make a list of 10 professions for today's youth other than those in the medical						
		and Engineering field.	6M	CO2	L1			
	(b)	What is Moral dilemma? List out various situations when moral dilemmas arise. (OR)	•					
		'Personal life leads to Professional life' – Elucidate.	6M	CO2	L3			
4.	(a)	Explain Kohlberg's theory on moral autonomy.	6M	CO2	L2			
	(b)	TINIT _ III			~			
5.	(a)	What do you mean by competence in professional ethics? Elaborate with	6M	CO3	L5			
٥.	(~)	overnales		CO3	L2			
	(b)	Define the safety and risk assessment and list out few factors to reduce risks.	OIAT	COS	1.22			
		(OR)	6M	CO3	L1			
6.	(a)	What are the factors that influence the risk benefit analysis?			L4			
	(b)	How does engineering disaster occur? Explain briefly about Chernobyl case						
		study. UNIT – IV						
et	(-)	Natural acceptance is innate, invariant and universal. Explain this statement	6M	CO4	L2			
7.	(a)	4.4						
	(b)	with an example. Mutual fulfillment in human relationships is something we want, we aspire for,	6lVI	CO4	L4			
	(10)	Justify the statement.						
		(OR)	. AM	CO4	T.1			
8.	(a)	What is value education? Why there is a need of value education? What are the	, 6111					
		basic guidelines for value education?	6M	CO4	L3			
	(b)	TINITE. V						
		and the state of t	1 6M	[CO5	L6			
9.	(a)	a 44 : 11 <i>f</i> 11=41						
	(b)	- 1 toc 1 to the intention and competence when you have to judge	e 6M	(CO5	; L4			
	(b)	the other. Why is it important?						
		(OR)	: <i>(</i> B)	ı cos	5 1.2			
10.	(a)	Bring out the differences and similarities between a human being and an anima	i. Ota	<u> </u>	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	()	C'log to support your answer		A COS	5 L6			
	(b)		, 021		-			