Annexure -1 Curriculum For B.Tech (Civil Engineering)

First	Semester							
Subject	Subject	Subject Title	L	Т	Р	IM	EM	CR
code	Category							
2021101	BSC	Linear Algebra and Calculus	0	0	30	70	3	
20EP102	BSC	Engineering Physics	0	0	30	70	3	
2024103	HSMC	Communicative English	3	0	0	30	70	3
2014104	ESC	Basic Electrical & Electronics Engineering	3	0	0	30	70	3
2003105	ESC	Engineering Drawing	1	0	2	30	70	2
2003106	ESC	Engineering Drawing Lab	0	0	2	40	60	1
20EP107	BSC	Engineering Physics Lab	0	0	3	40	60	1.5
2024108	HSMC	Communicative English Lab	0	0	3	40	60	1.5
2014109	ESC	Basic Electrical & Electronics Engineering Lab	0	0	3	40	60	1.5
		Total	13	0	13	310	590	19.5

Second Semester

Subject	Subject	Subject Title	L	Т	Р	IM	EM	CR
code	Category							
2021201	BSC	Differential Equations and Vector Calculus	3	0	0	30	70	3
20EC202	BSC	Engineering Chemistry	3	0	0	30	70	3
2005203	ESC	C-Programming & Data Structures	3	0	0	30	70	3
2001204	ESC	Strength of Materials	3	0	0	30	70	3
20EW205	LC	Engineering Workshop	0	0	3	40	60	1.5
2005206	LC	IT Workshop	0	0	3	40	60	1.5
20EC207	BSC	Engineering Chemistry Lab	0	0	3	40	60	1.5
2005208	ESC	C-Programming & Data Structures Lab	0	0	3	40	60	1.5
2001209	ESC	Strength of Materials Lab	0	0	3	40	60	1.5
20MC210	MC	Environmental Science	3	0	0	30	0	0.0
		Total	15	0	15	350	580	19.5

Course	Title	Linear A	Linear Algebra & Calculus (R20)					B. Tech. I Sem (Common to All Branches)			
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks				
2021101	01	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	30	70	100		
	Mid E	Exam Duratio	n: 2Hou	irs		En	nd Exam Duration	on: 3Hours			
Course	Object	tives:									
• Т	• This course will illuminate the students in the concepts of calculus and linear algebra.										
• 1 n w	lo equi nathem vorld p	p the students natics to develo roblems and th	with sta p the co neir appli	ndard nfiden cations	conce _j ce anc	pts and tools l ability amo	s at an intermedia ng the students to	te to advand handle var	ced level ious real		
Course	Outcom	mes : On succ	essful co	mpletio	on of t	this course, the	he students will b	e able to			
CO 1	Devel	lop the use of	matrix	algebra	a tech	niques that	is needed by eng	gineers for	practical		
	applic	cations.									
CO 2	Utilize	e mean value tl	neorems	to real	life pr	roblems.					
CO 3	Classi	fy the function	ons of se	veral va	nriable	s which is us	eful in optimization	on techniqu	es.		
CO 4	Evalu	ate multiple in	tegrals.				-				
CO 5	Defin	e Beta and Ga	mma fur	nctions.							

Bridge Course: Limits, continuity, Types of matrices

<u>UNIT I</u>

Matrices: (12 Hours)

Rank of a matrix by Echelon form, Normal form. Solving system of homogeneous and nonhomogeneous linear equations. Eigen values and Eigen vectors for real matrices – Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley–Hamilton theorem. Diagonalisation by orthogonal transformation.

Learning Outcomes:

At the end of this unit, the student will be able to

- solve systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigen vectors (L3).
- identify special properties of a matrix and use this information to facilitate the calculation of matrix characteristics (L3)

<u>UNIT II</u>

Mean Value Theorems: (08 Hours)

Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proof), related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- analyze the behaviour of functions by using mean value theorems (L3)

<u>UNIT III</u>

Multivariable Calculus: (10 Hours)

Partial derivatives, total derivative, chain rule, change of variables, Jacobians, Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- acquire the Knowledge maxima and minima of functions of several variable (L1)
- utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT IV

Multiple Integrals: (10 Hours)

Evaluation of double integrals in Cartesian coordinates and polar coordinates – Change of variables in double integrals – Change the order of integration in double integrals – Evaluation of triple integrals in Cartesian and polar coordinates – Change of variables between Cartesian, cylindrical and spherical polar coordinates.

Learning Outcomes:

At the end of this unit, the student will be able to

- evaluate double integrals of functions of several variables in two dimensions using cartesian and polar coordinates (L5)
- evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

<u>UNIT V</u>

Beta and Gamma functions: (08 Hours)

Beta and Gamma functions and their properties, relation between Beta and Gamma functions, evaluation of definite integrals using Beta and Gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- understand beta and gamma functions and its relations (L2)
- conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-43 edition 2014.
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition-2013.

Reference Books:

- 1. Higher Engineering Mathematics, B.V. Ramana, Mc. Graw Hill Education (India) Pvt. Ltd, New Delhi, 11th Edition, Reprint 2010.
- 2. Linear Algebra: A Modern Introduction, D Poole, 2nd Edition, Brooks/Cole, 2005.
- 3. A Text Book of Engineering Mathematics, N.P. Bali and Manish Goyal, Lakshmi Publications, Reprint 2008

Course Title	ENG	NEER	ING PI	HYSIC	S	B. Tech. CE -I Sem			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
20EP102	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	30	70	100	
Mid Exam Dur		End Exam	Duration:	3Hrs					

Course Objectives:

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction related to its Engineering applications.
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibers along with engineering applications.
- To open new avenues of knowledge in magnetic materials which find potential in the emerging micro device applications.
- To familiarize the concepts of theoretical acoustics to practical use in engineering field.
- To explain the significance of ultrasound and its application in NDT for diversified engineering application.
- To enlighten the periodic arrangement of atoms in crystals, Bragg's law and to provide fundamentals related to structural analysis through powder diffraction method.

Course	Outcomes: On successful completion of this course, the students will be able to
CO1	Understand the different realms of physics and their applications in both scientific and
	technological systems through physical optics.
CO2	Identify the wave properties of light and the interaction of energy with the matter.
CO3	Illustrate the response of magnetic materials to the applied electric and magnetic fields.
CO4	Explain the basic concepts of acoustics and ultrasonics.
CO5	Classify the important properties of crystals like the presence of long-range order,
	periodicity and structure determination using X-ray diffraction technique.

Unit-I: Wave Optics

10hrs

Interference- Principle of superposition – Interference of light – Conditions for sustained interference – Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings- Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)

Unit-II: Lasers and Fiber optics

8hrs

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Block diagram of Optical fiber Communication system - Propagation Losses (Qualitative) – Applications.

Unit Outcomes:

The students will be able to

- ▶ Understand the basic concepts of LASER light Sources (L2)
- > **Apply** the concepts to learn the types of lasers (L3)
- ➤ Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)

UNIT III: Engineering Materials

Magnetic Materials- Introduction to magnetic materials - Classification of magnetic materials: Dia, Para & Ferro – Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Nanomaterials- Introduction – Surface area and quantum confinement – Physical properties: electrical and magnetic properties – Synthesis of nanomaterials: Top-down: Ball Milling – Bottom-up: Chemical Vapour Deposition, Sol-Gel method – Characteristics of nanomaterials - Applications of nanomaterials.

Unit Outcomes:

The students will be able to

- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)
- > Identify the nanosize dependent properties of nanomaterials (L2)
- > Illustrate the methods for the synthesis and characterization of nanomaterials (L2)

Unit-IV: Acoustics and Ultrasonics

Acoustics- Introduction – Requirements of acoustically good hall – Reverberation – Reverberation time – Sabine's formula (Derivation using growth and decay method) – Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedies.

Ultrasonics- Introduction – Properties –Production by magnetostriction and piezoelectric methods – Detection – Acoustic grating — Pulse echo system through transmission and reflection modes – Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- > Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- ▶ **Identify** the use of ultrasonics in different fields (L3)

Unit-V: Crystallography and X-ray diffraction

Crystallography- Space lattice, Basis, unit cell and lattice parameters – Bravais Lattice – Crystal systems – Packing fraction – Coordination number – Packing fraction of SC, BCC & FCC – Miller indices – Separation between successive (hkl) planes.

X-ray diffraction - Bragg's law – Bragg's X-ray diffractometer – Crystal structure determination by Powder method.

Unit Outcomes:

The students will be able to

- Classify various crystal systems (L2)
- ► **Identify** different planes in the crystal structure (L3)
- > Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- > Apply powder method to measure the crystallinity of a solid (L4)

Prescribed Text books:

1. Engineering Physics - Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company

2. Engineering physics - D.K. Battacharya and Poonam Tandon, Oxford University press.

Reference Books:

1. Engineering Physics - Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press

8hrs

10hrs

10hrs

- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics M.R. Srinivasan, New Age Publications

Course	Title	COMMU	NICA	TIVE I	ENGL	JSH	B. Tech. CE -I Sem			
Course	Code	Category	Ho	ours/We	eek	Credits	Maxir	num Mark	S	
20241	103	HSME	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	30	70	100	
	Mid	Exam Duratio	n: 2H	rs		E	End Exam Dur	ation: 3Hr	3	
Course	Objecti	ives:								
• F	acilitate	e effective liste	ning s	skills for	bette	er compre	hension of aca	idemic lect	ures and	
E	English	spoken by native	e speal	kers		1				
• F a	• Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials									
• H d	• Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations									
• I	mpart o vriting v	effective strateg vell organized es	ies foi says, r	egood v ecord an	vriting d repo	; and dem ort useful ir	onstrate the sa nformation	me in sum	marizing,	
• F	rovide	knowledge of	gran	matical	struc	tures and	vocabulary a	nd encoura	ge their	
a	ppropri	ate use in speed	n and v	writing					0	
Course	Outcon	nes: On success	ful con	npletion	of thi	s course, th	ne students will	be able to		
CO1	Retriev	ve the knowledg	e of ba	asic gram	matic	al concepts	3			
CO2	Under	stand the cont	ext, t	opic, an	d pie	ces of sp	ecific informat	ion from s	social or	
	transa	ctional dialogues	spoke	en by nat	ive sp	eakers of E	English			
CO3	Apply	grammatical str	ucture	s to form	nulate	sentences a	and correct wor	d forms		
CO4	Analyz	ze discourse man	kers to	o speak c	learly	on a specif	ic topic in infor	mal discussi	ons	
CO5	Evaluation	ate reading/liste	ning te	exts and	to wri	ite summat	ries based on gl	obal compr	ehension	
CO6	Create	a coherent para	graph	interpret	ting a f	figure/grap	h/chart/table			

Course Outcomes

At the end of the course, the learners will be able to

- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

Unit 1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for

specific pieces of information. **Writing :**Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Parts of Speech; Word formation, synonyms and antonyms; Idioms and Phrases; phrasal verbs.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

Unit 2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters.

Grammar and Vocabulary: Sentence structure; articles; Tenses; Prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

Unit 3

Lesson: A City Night Peace - Oliver Goldsmith

Listening: Listening for global comprehension and summarizing what is listened to. Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Writing: Summarizing, Paragraph Writing Grammar and Vocabulary: Voice; Reported Speech; Degrees of Comparison, Subject with agreement.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

Unit4

Lesson: Being Rich, Being Good - Chetan Bhagat

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing

Grammar and Vocabulary: Information Transfer; Simple, Compound and Complex sentences; Question Tags

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations
- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

Unit 5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. **Writing:** Writing structured essays on specific topics using suitable claims and evidences.

Grammar and Vocabulary: Reading Comprehension; Dialogue Writing; Common Errors. Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Prescribed Text:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Web links <u>www.englishclub.com</u> <u>www.easyworldofenglish.com</u> <u>www.languageguide.org/english/</u> <u>www.bbc.co.uk/learningenglish</u> <u>www.eslpod.com/index.html</u> <u>www.myenglishpages.com</u>

Course Title	Basic E	Electri Eng	cal & ineeri	Elect ng	ronics	B. Tech. I Semester CE			
Course Code	Category	Ho	urs/W	'eek	Credits	Maximum Marks			
2014104	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	-	3	30	70	100	
	Mid Exam l	Durati	ion : 2	Hrs		End Exam I	Duration :	3Hrs	
Course Ob Machines, 'I devices, bias logic devices	jectives: The Fransformers sing of BJTs a s.	objec and l and FI	tive of Power ETs, d	f the co Syster esign 2	ourse is to loms. Theory and constru	earn basics of DC and , construction, and c ction of amplifiers, co	AC circuit operation o oncepts & p	ts, Electrical of electronic principles of	
Course Ou to,	Course Outcomes: On successful completion of this course, the students will be able to,								
CO 1	Understand techniques,	the machi	basic nes an	funda d pow	mentals of er system fo	DC & AC circuit Indamentals	rs, networl	x reduction	
CO 2	Understand diodes and applications	theor its	ry, con applic	nstruct ations	ion, and o , working	peration of electronic of transistors, mice	c devices, rocontrolle	working of rs & their	
CO 3	Determine values for d single phase	Determine the currents, voltages using mesh and nodal analysis, Average and RMS values for different waveforms, equivalent circuit parameters using OC & SC test of single phase transformer							
CO 4	Obtain the I	EMF o	equatio	on and	characteris	tics of dc machines an	nd Inductio	n motor.	
CO 5	Analyze sma	all sign	ial amj	olifier	circuits to f	ind the amplifier para	meters		
CO 6	Design sma	ll sign:	al amp	lifiers	using prope	er biasing circuits to fi	x up prope	r Q point	

UNIT I

Part A: Basic Electrical Engineering

DC Circuits: Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem. Simple Numerical Problems.

AC Circuits: Representation of sinusoidal waveforms – Average and RMS values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, simple numerical problems.

UNIT II

DC Machines: Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Torque equation – Performance Characteristics of DC Motor, speed control (Flux & Armature control of shunt motor), Simple numerical problems.

Transformers: Principle and operation of Single Phase Transformer – Emf equation, equivalent circuit, OC and SC tests on transformer, simple numerical problems.

Induction Motor: Principle and operation of 3-phase Induction Motor [Elementary treatment only].

UNIT III

Basics of Power Systems: Typical AC power supply scheme – Generation of 3-phase supply, Definition of short, medium and long transmission lines – Concepts of AC & DC distribution system.

Text Books

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References

- 1. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- 2. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Part B: Basic Electronics Engineering

UNIT I

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

UNIT II

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

UNIT III

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder. Latches and Flip-Flops (S-R, JK and D), Shift Registers and Counters. Introduction to Microcontrollers and their applications (Block diagram approach only).

Text Books

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4th Edition, Pearson, 2017.
- 3. R. P. Jain, Modern Digital Electronics,3rd Edition, Tata Mcgraw Hill,2003.
- 4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books

- 1. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co, 2010.

Course	Title	Engineering Drawing					1 st B. Tech. CE			
Course	Code	Category	Ho	urs/We	eek	Credits	Maximum Marks			
20031	.05	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			1	0	2	2	50	50	100	
	Mid	l Exam Duratio	on: 2H	rs		E	End Exam Dura	tion: 3Hr	8	
Course Objectives:										
• B	ring aw	vareness that En	gineerir	ng Draw	ing is t	he Langua	ge of Engineers.			
• F	amiliari	ze how industry	comm	unicates	techn	ical inform	ation.			
• T	'each th	e practices for a	ccuracy	and cla	rity in	presenting	the technical inf	ormation.		
• D	Develop	the engineering	imagin	ation es	sential	for success	sful design.			
Course (Dutcon	nes: On success	ful con	pletion	of this	course, the	e students will be	e able to		
CO 1	Draw	various curves a	pplied i	n engine	eering.					
CO 2	Show	projections of so	olids an	d section	ns grap	hically.				
CO 3	Draw	the developmen	t of sur	faces of	solids.					
Co4	Know	draw orthograp	hic and	isometr	ric proj	ections				
CO5	Evalua	te different met	hods of	f perspe	ctive v	iew.				

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its Significance-Conventions in drawing-lettering - BIS conventions.

a)Conic sections including the rectangular hyperbola- general method only,

b) Cycloid, epicycloids and hypocycloid c) Involutes

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Unit: III

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Unit: IV

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Unit: V : perspective projection –applications of perspective view –terminology of perspectiveview- methods of drawing perspective view-simple problems.

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI,2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Additional Sources

1. Youtube: http-sewor, Carleton. cag,kardos/88403/drawings.html conic sections-online, red woods.edu

Note: The distribution of marks shall be 50 for internal evaluation and 50 for end examination.. In the Internal evaluation 25 marks for day-to-day work in the class that shall be evaluated by the concerned subject teacher based on the submissions prepared in the class. Further, there shall be two midterm exams in a Semester evenly distributed over the syllabi for 25 marks. Total internal marks for midterm exams will be evaluated by giving 80% weightage to the better mid exam and 20% to the other mid examination. The sum of day to day evaluation and the internal test marks will be the final internal marks for the subject.

Course Title	Engineering	g Draw	ing La	ıb		1 st B. Tech. CE			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
2003106	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	2	1	40	60	100	
Mid	Exam Duratio	n: 2Hr	E	End Exam Dura	ation: 3Hrs	8			

Course Objectives:

- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.
- Bring awareness that Engineering Drawing is the Language of Engineers

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	use computers as a drafting tool
CO 2	draw isometric drawings using CAD packages.
CO 3	Analyze orthographic drawings using CAD packages

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3Dmodeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, poly lines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V. Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI,2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Additional Sources

1. Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

Course Title	ENGINE	ERIN	G PHY	YSICS	LAB	B. Tech. CE -I Sem			
Course Code	Category	Hours/Week (Credits	Maximum Marks			
20EP107	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	3	1.5	50	50	100	
End Exam Duration: 3Hrs									

Course Objectives:

- Understand the role of Optical fiber parameters in engineering applications
- Recognize the significance of laser by studying its characteristics and its application in finding the particle size.
- Illustrates the magnetic and dielectric materials applications.
- Identifies the various sensor applications.

Course	Course Outcomes: On successful completion of this course, the students will be able to							
CO1	Determine various optical instruments.							
CO2	estimate wavelength of laser and particles size using laser.							
CO3	evaluate the acceptance angle of an optical fiber and numerical aperture							
CO4	determine magnetic susceptibility of the material and its losses by B-H curve							
CO5	Justify the concepts of ultrasonics by acoustic grating							

Note: - In the following list of experiments, out of 12 experiments any 10 experiments (minimum 8) must be performed in a semester.

List of Engineering Physics Experiments

1.	Determine the thickness of the wire using wedge shape method
	Experimental outcomes:
	Operates optical instrument like travelling microscope.
	Estimate the thickness of the wire using wedge shape method
	Identifies the formation of interference fringes due to reflected light from non-
	uniform thin film.
2.	Determination of the radius of curvature of the lens by Newton's ring method
	Experimental outcomes:
	Operates optical instrument like travelling microscope.
	Estimate the radius of curvature of the lens
	Identifies the formation of interference fringes due to reflected light from non-
	Plots the square of the diameter of a ring with no. of rings
3	Determination of wavelength by plane diffraction grating method
5.	Europine entel esteemeet
	Experimental outcomes:
	Operates optical instrument like spectrometer.
	Estimate the wavelength of the given source
	Identifies the formation of grating spectrum due diffraction.
4.	Determination of dispersive power of prism.
	Experimental outcomes:
	Operates optical instrument like spectrometer.
	Estimate the refractive index and dispersive power of the given prism
	Identifies the formation of spectrum due to dispersion.
5.	Determination of wavelength of LASER light using diffraction grating.

Experimental outcomes:

Operates various instrument **Estimate** the wavelength of laser source **Identifies** the formation of grating spectrum due diffraction.

- 6. Determination of particle size using LASER.
 - Experimental outcomes: Operates various instrument Estimate the Particles size using laser Identifies the application of laser
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the numerical aperture and acceptance angle of a given optical fiber.

Identifies the significance of numerical aperture and acceptance angle of an optical fiber in various engineering applications.

8. Determination of dielectric constant by charging and discharging method.

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the dielectric constant of the given substance.

Identifies the significance of dielectric constant in various devices.

9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the magnetic field along the axis of a circular coil carrying current.

Plots the intensity of the magnetic field of circular coil carrying current with distance

Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
 Experimental outcomes:
 Operates various instruments and connect them as per the circuit.

Estimate the hysteresis loss, coercivity and retentivity of the ferromagnetic material. **Classifies** the soft and hard magnetic material based on B-H curve.

Plots the magnetic field H and flux density B

11. Determination of ultrasonic velocity in liquid (Acoustic grating)

Experimental outcomes:

Operates various instruments.

Estimate the velocity of ultrasonic waves in liquids.

Illustrates the basic applications of ultrasonics.

12. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum)
Experimental outcomes:
Operates various instruments.
Estimate the rigidity modules of a given wire
Plots length of the pendulum (l) with time period T²

References:

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

Course Title	COMMUN	ICATI	VE EN	GLIS	H LAB	B. Tech. CE -I Sem		
Course Code	Category	Ho	urs/We	eek	Credits	Maximum Marks		
2024108	HSME	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		0	0	3	1.5	40	60	100
Mid	Exam Duratio	on: 2H	E	nd Exam Dur	ation: 3Hr	'S		

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Students will be exposed to a variety of self instructional, learner friendly modes of language learning
- Students will learn better pronunciation through stress, intonation and rhythm
- Students will be trained to use language effectively to face interviews, group discussions, public speaking
- Students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

Course Outcomes

- CO1: Listening and repeating the sounds of English Language
- CO2: Understand the different aspects of the English language proficiency with emphasis on LSRW skills
- CO3: Apply communication skills through various language learning activities
- CO3: Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- CO5: Evaluate and exhibit acceptable etiquette essential in social and professional settings
- CO6: Create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.

Unit 1

- Listening Skills
- Phonetics
- Introducing oneself

Learning Outcomes

At the end of the module, the learners will be able to

- understand different accents spoken by native speakers of English
- learn different professional registers and specific vocabulary to describe different persons, places and objects

Unit 2

- Describing objects
- JAM / Interpretation of Hypothetical Situations
- Role play

Learning Outcomes

At the end of the module, the learners will be able to

- produce a structured talk extemporarily
- comprehend and produce short talks on general topics

Unit 3

- Hypothetical situations (If..... were)
- Elocution
- TED talks videos

Learning Outcomes

At the end of the module, the learners will be able to

- Learn different ways of greeting and introducing oneself/others
- summarize the content with clarity and precision and take notes while listening to a talk/lecture and make use of them to answer questions

Unit4

- Visual Description
- Situational conversations

Learning Outcomes

At the end of the module, the learners will be able to

- Learn different ways of asking information and giving directions
- understand non-verbal features of communication

Unit 5

- Oral Presentations
- PowerPoint presentations

Learning Outcomes

At the end of the module, the learners will be able to

- make formal oral presentations using effective strategies
- help in overcoming the fear of facing people.

Suggested Software

- Orell
- Walden Infotech
- Young India Films
- K-Van solutions

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links <u>www.esl-lab.com</u> <u>www.englishmedialab.com</u> www.englishinteractive.net

Course Title	Basic H	Electrie Engine	cal & 2 eering	Electi Lab	ronics	B. Tech. I So	emester C	E				
Course Code	Category	Ηοι	ırs/W	eek	Credits	Maximur	Maximum Marks					
2014109	BSC	L	Т	P C		Continuous Internal Assessment	End Exam	Total				
		0	0	3	1.5	40	60	100				
	End Exam Duration : 3Hrs											
Course Or measureme machines a the amplifie	Course Objectives: The objective of the course is to verify KCL, KVL, superposition theorem, measurement of real & reactive power for RL & RC circuits, performance characteristics of DC machines and transformers. Analyze the characteristics of Diodes, BJT, MOSFET, UJT, design the amplifier circuits from the given specifications and verification of truth tables.											
Course O to,	utcomes: On	succe	essful	comp	letion of th	nis course, the stud	ents will	be able				
CO 1	Verify Kirchh given circuit, for RL & RC	noff's l truth t circuit	aws, su able fo s,	iperpo or diffe	osition theor erent logic g	em theoretically and ates and measure rea	practically l & reactive	for any e power				
CO 2	Illustrate var (Practically)	ious o	charact	teristic	cs of DC	machines from th	e measure	ed data				
CO 3	Obtain the eff	ficienc	y and r	egulat	ion for singl	e phase transformer						
CO 4	Learn the cha diode & BJT	aracteri	istics o	of basi	c electronic	devices like PN jund	ction diode	e, Zener				
CO 5	Analyze the circuits	applica	ition o	of dio	de as rectif	iers, clippers and cl	ampers an	d other				

<u>Part – A</u>

Basic Electrical Engineering Lab (Any 5 experiments)

List of experiments

- 1. Verification of Kirchhoff laws
- 2. Verification of Superposition Theorem
- 3. Magnetization characteristics of a DC Shunt Generator
- 4. Speed control of DC Shunt Motor
- 5. OC & SC test of 1 Phase Transformer

- 6. Load test on 1-Phase Transformer
- 7. Brake test on DC Shunt Motor
- 8. Measurement of Real & Reactive Power by single phase RL,RC circuits

Part – B

Basic Electronics Engineering Lab (Any 5 experiments)

List of Experiments

- 1. PN Junction diode characteristics A) Forward bias B) Reverse bias
- 2. Zener diode characteristics and Zener as voltage Regulator
- 3. Full Wave Rectifier with & without filter
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Course Title	Different	ial Equ Calcul	ations us (R2	Vector	B. Teo (Common to	ch. II Sem	hes)			
Course Code	e Category	Category Hours/Week Credits				Maxim	um Marks	/		
2021201	BSC	L	T	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0		3	30	70	100		
Mid Exam Duration: 2HoursEnd Exam Duration: 3Hours										
Course Obje	Course Objectives:									
• To en	lighten the learn	ers in the	e concep	ot of d	ifferential e	quations.				
• To fu advan	rnish the learner ced level by han	s with ba dling var	sic cone ious rea	cepts a l worle	nd techniqu d application	ues at plus two lev ns	rel to lead th	iem into		
Course Outo	omes : On succ	essful co	mpletio	n of tl	nis course, t	he students will b	e able to			
CO 1	Classify second	1 and hig	gher or	der liı	ner D.E's w	with constant coe	efficients.			
CO 2	Solve partial di	fferentia	ıl equat	tions.						
CO 3	Analyze the ap	plication	ns of pa	artial o	lifferential	equations.				
CO 4	Understand ve	ctor diff	erentia	tion c	oncepts.					

UNIT I

CO 5

Linear differential equations of higher order (constant coefficients) : (10 Hours)

Definitions, homogeneous and non-homogeneous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters.

Learning Outcomes:

At the end of this unit, the student will be able to

Apply vector integration concepts.

- identify the essential characteristics of linear differential equations with constant coefficients (L3)
- solve the linear differential equations with constant coefficients by appropriate method (L3)
- classify and interpret the solutions of linear differential equations (L3)

<u>UNIT II</u>

Partial Differential Equations: (10 Hours)

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order equations using Lagrange's method.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply a range of techniques to find solutions of standard PDEs (L3)
- outline the basic properties of standard PDEs (L2)

<u>UNIT III</u>

Applications of Partial Differential Equations: (10 Hours)

Classification of PDE, method of separation of variables for second order equations. Applications of Partial Differential Equations: One dimensional Wave equation.

Learning Outcomes:

At the end of this unit, the student will be able to

- classify the PDE (L3)
- learn the applications of PDEs (L2)

<u>UNIT IV</u>

Vector differentiation: (08 Hours)

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply del to scalar and vector point functions (L3)
- illustrate the physical interpretation of Gradient, Divergence and Curl (L3)

<u>UNIT V</u>

Vector integration: (08 Hours)

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Learning Outcomes:

At the end of this unit, the student will be able to

- find the work done in moving a particle along the path over a force field (L4)
- evaluate the rates of fluid flow along and across curves (L4)
- apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals (L3)

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-43 edition 2014.
- Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition-2013
- 3. Calculus and Analytic geometry, G.B. Thomas and R.L. Finney, Pearson, 9th Edition, Reprint, 2002.

Reference Books:

1. Higher Engineering Mathematics, B.V. Ramana, Mc. Graw Hill Education (India) Pvt. Ltd, New Delhi, 11th Edition, Reprint 2010.

- 2. A Text Book of Engineering Mathematics, N.P. Bali and Manish Goyal, Lakshmi Publications, Reprint 2008.
- 3. Differential Equations and Vector Calculus, Dr. B.Rama Bhupal Reddy, G.Sreedhar, Dr. V.Ramachandra Reddy, Research India Publications, Delhi, 2020

Course Title	ENGIN	EERIN	G CH	EMIS	ΓRY	B. Tech. CE II Sem		
Course Code	Category	Hou	ırs/We	eek	Credits	Maximum Marks		
20EC202	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0	0	3	30	70	100
Mid	l Exam Duratio	on: 2Hrs		E	End Exam Dur	ation: 3Hr	8	

Course Objectives:

- To familiarize engineering chemistry and its applications
- To impart the concept of soft and hard waters, softening methods of hard water
- To train the students on the principles and applications of electrochemistry, polymers, surface chemistry, and cement.

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	Demonstrate the corrosion prevention methods and factors affecting corrosion.
CO 2	Explain the preparation, properties, and applications of thermoplastics & thermosetting,
	elastomers & conducting polymers.
CO 3	Evaluate calorific values, octane number, refining of petroleum and cracking of oils.
CO 4	Understand the setting and hardening of cement and concrete phase.
CO 5	Analyse the concepts of colloids, micelle and nanomaterials.

Unit 1: Water Technology (10 hrs)

Introduction –Soft Water and hardness of water, hardness of water by EDTA Method, Estimation of dissolved oxygen (Winkler's method)-Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlment, Industrial water treatment – specifications for drinking water, Bureau of Indian Standards(BIS) and World health organization(WHO) standards, ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electro dialysis.

Learning outcomes:

The student will be able to

- List the differences between temporary and permanent hardness of water (L1)
- Explain the principles of reverse osmosis and electro dialysis. (L2)
- Compare quality of drinking water with BIS and WHO standards. (L2)
- Illustrate problems associated with hard water scale and sludge. (L2)
- Explain the working principles of different Industrial water treatment processes (L2)

Unit 2: Electrochemistry and Applications: (10 hrs)

Introduction to electrodes - concepts, electrochemical cell, Nernst equation, cell potential calculations.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bed worth ratios and uses, Factors affecting the corrosion, Cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Apply Pilling Bed worth rule for corrosion and corrosion prevention (L3)
- Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- Compare different batteries and their applications (L2)

Unit 3: Polymers and Fuel Chemistry: (8 hrs)

Introduction to polymers, Polymer dispersion index, functionality of monomers, Mechanism of chain growth, step growth and coordination polymerization.

Thermoplastics and Thermo-setting plastics-: Preparation, properties and applications of poly styrene. PVC and Bakelite

Elastomers - Preparation, properties and applications of Buna S, Buna N, Thiokol

Fuels – Types of fuels, calorific value, numerical problems based on calorific value; Analysis of coal, **Liquid Fuels** refining of petroleum, fuels for IC engines, knocking and anti-knock agents, Octane and Cetane values, cracking of oils; alternative fuels- propane, methanol and ethanol, bio-fuels.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain different types of polymers and their applications (L2)
- Solve the numerical problems based on Calorific value(L3)
- Select suitable fuels for IC engines (L3)
- Explain calorific values, octane number, refining of petroleum and cracking of oils (L2)

Unit 4: Advanced Engineering Materials (10 hrs)

Refractories- Classification, Properties, Factors affecting the refractory materials and Applications.

Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils – Viscosity, Viscosity Index, Flash point, Fire point, Cloud point.

Building materials- Portland cement, constituents, phases and reactivity of clinker, Setting and Hardening of cement.

Learning Outcomes:

At the end of this unit, the students will be able to

- Identify the factors affecting the refractory material(L3)
- Illustrate the functions and properties of lubricants (L2)
- Demonstrate the phases and reactivity of concrete formation (L2)
- Identify the constituents of Portland cement (L3)
- Enumerate the reactions at setting and hardening of the cement (L3)

Unit 5: Surface Chemistry and Applications: (10 hrs)

Introduction to surface chemistry, colloids, micelle formation, synthesis of colloids (Dispersion method), chemical and electrochemical method (chemical vapour deposition) of preparation of nanometals and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, applications of colloids and nanomaterials –medicine.

Learning Outcomes:

At the end of this unit, the students will be able to

- Summarize the concepts of colloids, micelle and nanomaterials (L2)
- Explain the synthesis of colloids with examples (L2)
- Outline the preparation of nanomaterials and metal oxides (L2)
- Identify the application of colloids and nanomaterials in medicine.(L2)

Text Books:

1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.

2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 3. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.
- 4. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman, 1992.

Course	Title	C PROC S	RAM TRCI	MING UTURI	& D / ES	АТА	B.Tech	II Sem C	Έ	
Course	Code	Category	Hours/Week			Credits	Maximum Marks			
20052	203	ES	L T P		С	Continuous Internal Assessment	End Exams	Total		
	Mid Error Duration: 2 Hours						30	70	100	
	Mid Exam Duration: 2 HoursEnd Exam Duration:								'S	
Course	Objecti	ves:								
•	The course aims to provide exposure to problem-solving through programming									
•	It aims	to train the stu	dent to	o the ba	sic con	ncepts of th	ie C programmi	ng languag	e	
•	Gain k	nowledge of dat	ta struc	ctures a	nd the	ir applicatio	ons			
Course	Outcom	nes: On success	ful con	npletion	n of th	is course, t	he students will	be able to		
CO 1	Formu	late simple alg	orithn	ns for	arithm	netic and I	logical problem	s and to	translate	
	algoritl	nms to program	s (in C	Langu	age).					
CO 2	Choos	e the loops and	decisio	on-maki	ng sta	tements to	solve the proble	em		
CO 3	Implement different Operations on arrays									
CO 4	Use fu	nctions to solve	the gi	ven pro	blem					
CO 5	Unders	stand structures	, unior	ns and p	ointer	S				
CO 6	Unders	stand need of da	ata stru	ictures i	in real	time situat	ions			

UNIT I:

Introduction to C programming: - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements. Jumping statements: break, continue and goto statements

UNIT II:

Arrays: Introduction, Declaration and initialization of 1D and 2D arrays, Functions: types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern. Strings: string handling functions, and Command line arguments.

UNIT III:

Pointers: Introduction to pointers, declaring and initialization of pointer variable, accessing the address of variables, accessing a variable through its pointer, chain of pointers. **Structures and unions:** Introduction, defining a structure, declaring structure variable, structure initialization,

accessing members of structure, copying and comparing structure variables, structures within structures, array of structures, and introduction of union.

UNIT IV:

Data Structures: Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Searching and sorting: linear search, binary search, bubble (exchange) sort, selection sort, insertion sort.

UNIT V:

Linked Lists – Single linked list, Operations on Single Linked List: insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations. **Trees** - Tree terminology, representation, Binary trees, representation, binary tree traversals. Binary tree operations.

TEXT BOOKS

- 1. E. Balagurusamy, C Programming and Data structures, Fourth Edition, McGrawHill.
- 2. Rema Theraja, Programming in C, second edition,Oxford.
- 3. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 4. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education

REFERENCE TEXT BOOKS

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. R.G. Dromey, How to solve it by Computer, Pearson.
- 3. YashavantKanetkar, Let us C, 15th edition, BPBPublications.
- 4. Dr. P. ChennaReddy, Computer Fundamentals and C Programming, SecondEdition.

Course Title	Str	ength o	of Mat	erials		B. Teo	ch. II Sem	
Course Code	Category	Hours/Week			Credits	Maximum Marks		
2001204	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0		3	30	70	100
Mid	Exam Duratio	on: 2Ho	urs	Eı	nd Exam Durati	on: 3Hours	3	

Course Objectives:

- To make the student understand how to resolve forces and moments in a given System
- To demonstrate the student to determine the centroid and second moment of area
- To impart procedure for drawing shear force and bending moment diagrams for beams.
- To make the student able to analyze flexural stresses in beams due to different loads.
- To enable the student to apply the concepts of strength of materials in engineering applications and design problems.

UNIT-I

Introduction to Mechanics: Basic Concepts, system of Forces - Coplanar Concurrent Forces -Components in Space Resultant -Moment of Forces and its Application - Couples and Resultant of Force Systems. Equilibrium of system of Forces: Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial systems- Center of Gravity and moment of inertia: Introduction – Centroids of rectangular, circular, I, L and T sections - Centroids of built up sections. Moment of Inertia: Introduction – Definition of Moment of Inertia of rectangular, circular, I, L and T sections - Radius of gyration. Moments of Inertia of Composite sections. Unit Outcomes:

- Understand the basic concepts of forces
- Draw Free Body Diagrams for forces
- Determine the centroid and moment of inertia for different cross section areas

UNIT – II

Simple Stresses and Strains:

Types of stresses and strains – Hooke's law – Stress – strain diagram for mild steel – working stress – Factor of safety – lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of Varying section – Composite bars – Temperature stresses. Strain energy – Resilience – Gradual, Sudden, impact and shock loadings – simple applications.

Unit Outcomes

- Understand concepts of stresses, strains, elastic moduli and strain energy.
- Evaluate relations between different moduli
- Understand different type's loadings

UNIT – III

Shear Force and Bending Moment:

Definition of beam – types of beams – Concept of Shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and over changing beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads – point of contra flexure – Relation between S.F, B.M and rate of loading at a section of a beam. **Unit Outcomes**

- Draw the shear force and bending moment diagrams for cantilevers, simply supported beams and Overhanging beams with different loads
- Understand the relationship between shear force and bending moments

UNIT – IV

Flexural Stresses:

Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/Y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hallow), I, T, Angle and Channel Sections – Design of simple beam sections. **Unit Outcomes**

Unit Outcomes

- Derive bending equations
- Compute the flexural stresses for different cross sections.
- Design beam sections for flexure

UNIT – V

Shear Stresses:

Derivation of Formula-Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections. Combined bending and shear.

Analysis of trusses by Method of Joints & Sections.

Unit Outcomes

- Determine shear stresses for different shapes.
- Evaluate effect of combined bending and shear on sections

Course Outcomes:

On completion of the course, the student will be able to:

- Understand the different types of couples and force systems
- Determine the centroid and moment of inertia for different cross-sections
- Understand the concepts of stress, strain, generalized Hooke's law, elastic moduli and strain energy.
- Develop shear force and bending moment diagrams for different load cases.
- Compute the flexural stresses and shear stresses for different loading cases and different cross-sections.

Text Books:

- 1. S. Timoshenko, D.H. Young and J.V. Rao, "Engineering Mechanics", Tata McGraw-Hill Company.
- 2. Sadhu Singh, "Strength of Materials", 11th edition2015, Khanna Publishers.

References:

- 1. S.S.Bhavikatti, "Strength of materials", Vikas publishing house Pvt. Ltd.
- 2. R. Subramanian, "Strength of Materials", Oxford University Press.
- 3. R. K. Bansal, "Strength of Materials", Lakshmi Publications House Pvt. Ltd.
- 4. Advanced Mechanics of Materials Seely F.B and Smith J.O. John wiley& Sons inc., New York.

Course T	itle	Engineeri	ng Wo	rkshop)		I st B.	Tech. CE			
Course C	ode	Category	y Hours/Week Credits Maximum Marks								
20EW2	05	LC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			0	0	3	1.5	40	60	100		
	Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs										
Co To familia	Course Objectives:										
10 1011110					sheet r	netal opera	itions.				
					fitting		,				
					electri	, cal house w	viring skills				
					wood	working,	0				
Course O	utcon	nes: On success	sful con	pletion	n of thi	s course, th	ne students will b	e able to			
CO 1	Apply	wood working	skills in	real wo	orld ap	olications					
CO 2 1	Build d	lifferent objects	s with n	netal sh	eets in	real world	applications				
CO 3	Apply fitting operations in various applications.										
CO 4	Apply different types of basic electric circuit connections										
CO5	Use so	ldering and bra	zing tec	hnique	s						

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

Half - Lapjoint

Mortise and Tenonjoint

Corner Dovetail joint or Bridlejoint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a)Taperedtray b)Conicalfunnel

c)Elbowpipe d)Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises

a) V-fit b)Dovetailfit c) Semi-circularfit

d) square fitting

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

a) Parallelandseries b) Twowayswitch c)Godownlighting d) Tubelight

e) Threephasemotor f) Soldering ofwires

Note: In each section a minimum of three exercises are to be carried out.

Course Title	itle IT WORKSHO					B.Tech	II Sem C	E				
Course Cod	e Category	Hours/Week Cred			Credits	Maximum Marks						
2005206	LC	L	Т	Р	C Internal Assessment End			Total				
		0	0	3	3 1.5 40 60							
		End Exam Dura	ation: 3Hrs	8								
Course Obje	ctives:											
• To m	ake the students	know	about 1	the in	ternal part	ts of a comput	er, assemb	ling and				
dissen	dissembling a computer from the parts, preparing a computer for use by installing the											
opera	operating system.											
• To pr	ovide Technical tr	aining t	to the s	tuden	ts on Prod	uctivity tools lik	e Word pr	ocessors,				
Sprea	lsheets, Presentati	ons and	l LAteX			5	1	,				
• To le	arn about Netwo	rking c	of com	outers	and use	Internet facility	for Brow	sing and				
Search	ing	8 *										
Course Outo	omes: On success	ful com	pletion	of thi	s course, th	ne students will h	be able to					
CO1 Dis	ssemble and Asse	mble a	Persona	l Con	puter and	prepare the com	puter ready	to use.				
CO 2 Pre	oare the Documen	ts using	Word	oroces	sors and P	repare spread sh	eets for					
calc	ulations .using exc	el and a	lso the	docun	nents using	LAteX.						
CO 3 Pre	oare Slide presenta	tions us	sing the	prese	ntation tool	l.						
CO 4 Inte	rconnect two or n	nore cor	nputers	for in	formation	sharing.						
CO 5 Acc	ess the Internet an	d Brow	se it to	obtain	the requir	ed information.						
					1							

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods.

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email.

They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered,

Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet.

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

1. Introduction to Computers, Peter Norton, McGraw Hill

2. MOS study guide for word, Excel, PowerPoint & Outlook Exams, Joan Lambert, Joyce Cox, PHI.

3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.

4. Networking your computers and devices, Rusen, PHI

5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH

6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course	Course Title ENGINE			CHEM	AISTR	Y LAB	B. Tecl	h. CE II Se	m			
Course	Code	Category	Ho	urs/W	eek	Credits	Maxir	s				
20EC	207	BSC	L	Т	Р	С	Continuous Internal Assessment	End lab Exams	Total			
			0	0	3	1.5	40	60	100			
	End Exam Duration: 3Hrs											
Course	Course Objectives:											
• 1	o verify	the fundament	al conc	epts wit	h expe	riments.						
Course	Outcon	nes: At the end	of the o	course, t	the stuc	lents will b	e able to					
CO 1	Deterr	mine the cell co	nstant	and con	ductan	ce of soluti	ions.					
CO 2	Synthe	esis of advance	d polyn	ner mate	erials.							
CO 3	Compare the physical properties like adsorption and viscosity.											
CO 4	Evaluate the Iron and Calcium in cement.											
CO 5	Estim	ate the hardnes	s & diss	solved o	oxygen	content in	water.					

List of Experiments:

- 1. Determination of Hardness of a groundwater sample.
- 2. Estimation of dissolved oxygen by Winkler's method
- 3. pH metric titration of strong acid vs. strong base.
- 4. pH metric titration of weak acid vs. strong base
- 5. Determination of cell constant and conductance of solutions
- 6. Potentiometry determination of redox potentials and emfs
- 7. Determination of Strength of an acid in Pb-Acid battery
- 8. Preparation of a polymer (Bakelite).
- 9. Determination of percentage of Iron in Cement sample by colorimetry
- 10. Estimation of Calcium in port land Cement
- 11. Preparation of nanomaterials by precipitation.
- 12. Adsorption of acetic acid by charcoal
- 13. Determination of percentage Moisture content in a coal sample
- 14. Determination of Viscosity of lubricating oil by Redwood Viscometer 1.
- 15. Determination of Viscosity of lubricating oil by Redwood Viscometer 2.

Course Title	C PROC STI	GRAMI RUCTI	MING URES	& DA LAB	ATA	B.Tech II Sem CE		
Course Code	Category	Ηοι	urs/W	eek	Credits	Maxin	num Mark	s
2005208	ES	ES L T P C As				Continuous Internal Assessment	End Exams	Total
		0	0	3	1.5	40	60	100
				End Exam	Duration:	3Hrs		

Course Objectives:

- know how to write and debug programs
- know the principles of designing structured programs
- Write basic C programs using, Selection statements, Repetitive statements,
- Functions, Pointers, Arrays, Strings and structures
- To apply suitable data structure to solve real world problems

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Formulate the algorithms for simple problems					
CO 2	Translate given algorithms to a working and correct program					
CO 3	Correct syntax errors as reported by the compilers					
CO 4	Identify and correct logical errors encountered at runtime					
CO 5	Write iterative as well as recursive programs					
CO 6	Represent data in arrays, strings and structures and manipulate them through a program					
CO 7	Write programs on data structures like stack, queue, liked list, trees etc					

- **1.** Ramesh 's basic salary is input through the keyboard. His dearness allowance is 40% of basic salary and house rent allowance is 20% of basic salary. Write a C program to calculate his grosss alary.
- **2.** Write a program to take input of name, roll no and marks obtained by a student in 5 subjects each have its 100 full marks and display the name, roll no with percentage score secured.
- **3.** a) Write a C program to find out whether a given number is even number or odd number.
 - b) Write a C program to check whether a given year is leap year or not.

- 4. Design and develop an algorithm that takes three coefficients (a, b, and c) of a Quadratic equation $(ax^2+bx+c=0)$ as input and compute all possible roots. Implement a C program for the developed algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages.
- **5.** If the ages of the Ramesh, Suresh and Mahesh are input through the keyboard, write a C program to determine youngest of the three.
- **6.** A character is entered through keyboard. Write a C program to determine whether the character entered is a capital letter, a small case letter, a digit or a special symbol using if- else and switch case. The following table shows the range of ASCII values for various characters.

Characters	ASCII values
A–Z	65 - 90
a– z	97 - 122
0 – 9	48 - 57
Special symbols	0 - 47, 58 - 64, 91 - 96, 123 - 127.

- 7. Write a C program which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use switch statement).
- **8.** Design and develop an algorithm to find whether a given number is Armstrong number or not. Implement a C program for the developed algorithm.
- **9.** Design and develop an algorithm to check whether a given number is palindrome or not. Implement a C program for the same.
- **10.** Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- **11.** Write a C program to generate the first N terms of Fibonacci sequence.
- **12.** Write a C program to find the smallest and largest number in a given array.
- **13.** Write a C program to find the frequency of a particular number in a list of integers.
- **14.** Write a C program to sort the list of elements usinga) Bubble Sortb) Selection sort.
- **15.** Write a C program to search for an element in a list of elements using
 - a) Linear search b) Binary search
- 16. Write a C program to read two matrices and perform the following operations
 - a) Addition of two matrices
 - **b)** Multiplication of two matrices

17. Partitioning an array

Given a randomly ordered array of n elements, write a C program to partition the elements into two subsets such that elements $\leq X$ are in one subset and elements $\geq X$ are in another subset.

- **18.** Write a C program to rearrange the elements in an array so that they appear in reverse order.
- **19.** If a string and its reversed string are same then the string is called as palindrome string. Design and develop an algorithm to check whether a given string is a palindrome or not and implement a C program for the same.
- **20.** Write a C program to read two strings and perform the following operations without using built string library functions.
 - i) String length ii) String reversing
 - iii) Comparison of two strings iv) Concatenation of two strings
- **21.** Write a C program to count the number of vowels, consonants, digits, blank space sand special characters in a given string.
- 22. Write a C program to swap the contents of two variables using

- a) Call by value
- **b)** Call by reference.
- **23.** Write a C program using recursion to
 - a) Find the factorial of a given number
 - **b)** Print the Fibonacci series up to a given number.
 - c) Find the GCD of two integers.
- **24.** Write a C program to define a structure with the following members.

Roll No., Name, marks in Sub1, Sub2, Sub3. Read the n students records and find th

ne total marks	of each stude	ent and print	the result in	the follow	ing tormat.	
D 11 D T	ЪT	0.1.4	0.1.0	0.1.0		

Roll No	Name	Sub1	Sub2	Sub3	Total marks	result
189Y1A0501	Kavya	80	70	75	225	Distinction

25. Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

26. Write C programs that implement Queue (its operations) using

- i) Arrays
- Pointers ii)

27. Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression
- 28. Write a C program that uses functions to perform the following operations on single linked list.

i) Creation iii) Deletion iv) Traversal ii) Insertion

29. Write a C program that uses functions to perform the following operations on Double linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

30. Write a C program that uses functions to perform the following:

Creating a Binary Tree of integers

ii) Traversing the above binary tree in preorder, inorder and postorder.

TEXT BOOKS

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A.Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg& Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011
- 4. E. Balagurusamy, Programming in ANSI C, Fifth Edition, McGrawHill.

Course Title	Strength of Materials Lab				ab	B. Tech. II Sem		
Course Code	Catagoan				Candita	Marrimanna Maulta		
Course Code	Category	Hours/Week			Credits	Maximum Marks		
2001209	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		0	0	3	1.5	40	60	100
Mid Exam Duration: 2Hours End Exam Duration: 3Hours						6		
Course Objectives:								
By performing this laboratory, the student will be able to know the structural behavior of various								

materials.

Course Outcome:

By performing the various tests in this laboratory the student will be able to know the structural behavior various structural elements when subjected to external loads

- Tension test.
- Bending test on (Steel/Wood) Cantilever beam.
- Bending test on simply supported beam.
- Torsion test.
- Hardness test.
- Compression test on Open coiled springs
- Tension test on Closely coiled springs
- Compression test on wood/ concrete
- Izod / Charpy Impact test on metals
- Shear test on metals
- Use of electrical resistance strain gauges.
- Continuous beam deflection test.

Course Title	ENVIRONMENTAL SCIEN				NCE	B. Tech. 2 nd Sem CE		
Course Code	Category	Hours/Week			Credits	Maximum Marks		
20MC210	мс	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3			0	30		
Mid Exam Duration: 2Hrs								
Course Objectives:								

- To make the students to get awareness on environment.
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life.
- To save earth from the inventions by the engineers.

Course Outcomes: On successful completion of this course, the students will be able to								
CO 1	Explain multidisciplinary nature of environmental studies and various Renewable							
	and Nonrenewable resources.							
CO 2	Understand Energy flow, bio-geo chemical cycles and ecological pyramids							
CO 3	Illustrate various causes of pollution and related preventive measures.							
CO 4	Summarize Solid waste management, Social issues related to environment and their							
	protection acts.							
CO 5	Evaluate Causes of population explosion, value education and welfare programmes.							

UNIT – I

Multidisciplinary Nature Of Environmental Studies: –Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems

Forest resources: deforestation, case studies - Mining, dams and other effects on forest and tribal people

Water resources : Use and over utilization of surface and ground water conflicts over water. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

Energy resources: Renewable & Non-Renewable.

Learning Outcomes

- **Explain** the importance of public awareness (L2)
- List the various natural resources (L1)

UNIT – II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food chains, food web-Ecological succession and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Desert ecosystem
- c. Aquatic ecosystems (lakes, rivers and oceans)

Biodiversity And Its Conservation : Introduction, Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global levels – India as a mega-diversity nation – Hot-spots of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Learning Outcomes:

- **Understand** different types of eco systems and their characteristics (L2)
- **Classify** types of biodiversity and its conservation methods (L2)

UNIT – III

Environmental Pollution: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

Learning Outcomes:

- Identify various sources of pollution and solid waste along with preventive measures(L1)
- Explain the different types of disasters and their managerial measures.(L2)

UNIT – IV

Social Issues And The Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents.

Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act. Learning Outcomes:

• Outline the social issues related to environment and their protection acts.(L2)

• **To know** about wild life protection , forest conservation act and conservation of natural resources (L2)

$\mathbf{UNIT} - \mathbf{V}$

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc.

Learning Outcomes:

- Illustrate about the population explosion and family welfare programmes.(L2)
- To identify the natural assets and related case studies.(L3)

TEXT BOOKS:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

REFERENCES:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M. Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.