Course Code	Course Name	Course Outcomes
		CO-1. Modeling of certain physical phenomena into appropriate
		matrices and their transformations.
		CO- 2. Transforming line integrals, double and triple integrals into
		one another in solving mathematical models of some engineering applications.
		CO- 3. Students shall apply Laplace transform techniques in
14211001	Mathematics-1	Transient and steady state analysis of electrical circuits, analysis of
		Structural engineering problems such as deflection of beams, columns etc.
		CO-4. Students are able to understand and apply Green's, Stoke's and Gauss-divergence theorems in solid mechanics, fluid
		mechanics, electrical engineering and various other fields.
		CO-1. Students are able to understand and apply differential
		equations in solving Hydrodynamics, Electromagnetic fields and
		Fluid mechanics problems.
		CO- 2. Students are able to understand and apply Numerical
		Methods in solving Simultaneous equations and Transcendental
		equations.
14211002	Mathematics-2	CO-3. Solving engineering problems that can be modeled as ordinary differential equations without finding general solutions.
		CO-4. Students are able to apply Fourier transform techniques to solve the Differential and Partial Differential equations that may
		arise in electrical circuits, analysis of Structural engineering
		problems such as deflection of beams, columns etc.
		• CO-1. The different realms of physics and their applications in
		both scientific and technological systems are achieved through the
		study of physical optics, lasers and fiber optics.

14221003	Engineering Physics	 CO-2. The important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction are focused along with ultrasonic non-destructive technique. CO-3. The properties and device applications of semiconducting and magnetic materials are illustrated. CO-4.The importance of super conducting materials and Nano-Materials along with their engineering applications is well elucidated
14231004	Engineering Chemistry	 CO-1. Graduate will be able to apply the knowledge of chemistry to identifying and addressing the problems of boilers in industry. CO-2. Graduate will be able to appreciate the use of high polymers in engineering uses. CO-3. Graduate will demonstrate the knowledge of Fuels and lubricating oils in Engines. CO-4. Graduate will be able to appreciate the appropriate analytical methods in chemical analysis using instrumentation.
14241005	English	 CO-1. Have improved communication in listening, speaking, reading and writing skills in general. CO-2. Have developed their oral communication and fluency in group discussions and interviews. CO-3. Have improved awareness of English in science and technology context. CO-4. Have achieved familiarity with a variety of technical reports.
14031006	Engineering Drawing	 CO-1.Apply principles of drawing in representing dimensions of an object. CO-2.Construct polygons and curves. CO-3.Draw projections of points, lines, planes and solids in different positions. CO-4.Convert the orthographic views into isometric views and vice versa.

		CO-1. Able to understand the basic building blocks of C.
		CO-2. Able to use logical structure and control structures of a
	Problem Solving & Programming	computer program.
14051007	in C	CO-3. Able to describe the use of arrays and modular programming
		CO-4. Able to illustrate the use of memory allocation and file
		handling functions.
		CO-1.Use marking tools, measuring tools, cutting tools (chisels,
		saws) used in carpentry and fitting trades to prepare basic carpentry
		and fitting joints.
		CO-2.Prepare Foundry jobs like single piece pattern and double
		piece pattern.
		CO-3. Make basic house wire connections.
14991008	Engineering Workshop	CO-4.Fabricate tin smithy jobs using snips, stakes and wooden
		mallet.
		(IT-Workshop)
		CO-5. Able to assemble and disassemble the PC.
		CO-6. Able to install Windows OS.
		CO-7. Able to work with MS-Office.
		CO-8. Able to Browse the Internet.
	Programming in C Lab	CO-1. Able to write, compile and debug programs in C language and
		use different data types in a computer program.
		CO-2. Able to implement programs involving decision structures,
14051009		loops, arrays and functions on different applications.
		CO-3. Able to implement the modular programming concepts,
		pointers, structures and unions.
		CO-4. Able to develop the concepts of file I/O operations and
		random access to files
		CO-1. Graduate will be able to apply the knowledge of physics
		laboratory in measuring the standard values.
		CO-2. Graduate will correlate the theory and experimental results.

14991010	Engineering Sciences Lab	CO-3. Graduate will be able to apply the knowledge of chemistry laboratory in identifying and addressing the problems in hardness of water.
		CO-4. Able to appreciate the appropriate analytical methods in chemical analysis using instrumentation.
		CO-1. Have improved communication in listening, speaking, reading and writing skills in general.
11211011	English Language and	CO-2. Have developed their oral communication and fluency in group discussions and interviews.
14241011	Communication Skills Lab	CO-3. Have improved awareness of English in science and technology context.
		CO-4. Have achieved familiarity with a variety of technical reports.
		CO1. In order to assess the student's progress towards achieving the learning outcomes, a number of home work problems may be assigned, graded and handed back to the student. Introduction on Law of mechanics,CO2. At the end of the course the student have clear concept about
		centroid, Moment of Inertia, polar moment of inertia, parallel & perpendicular axis theorems.
14112101	ENGINEERING MECHANICS	CO3.Also student learn about Law & types of friction, power transmission systems. Newton's law of motion, D'Alemberts principles & projectiles .simple stresses-strains and strain energy
		engineering problems dealing with force, displacement, velocity and acceleration.
		CO6.Ability to analyse the forces in any structures.
		learning outcomes, a number of homework problems may be assigned, graded and handed back to the students.
		find out strength and breaking point of given body. In deflection of beams, students can find out the bending moment and what load beam brakes.
		CO3.Use references that provide tabulated physical data that are by

14112102	MECHANICS OF SOLIDS	using Macaulay's method problems are solved easily.
		CO4. The students can able to apply mathematical knowledge to
		calculate the deformation behavior of simple structures.
		mechanical elements and analyse the deformation behavior for
		different types of loads.
		CO6: Acquire the knowledge of calculating complex stress in
		columns and shafts.
		CO 1: Analyze simple DC circuits and AC circuits.
		CO 2: Utilize the significance of Electrical machines and
		Transformers
		CO 3: Apply knowledge on semi-conductor diodes and its
		applications.
	ELECTRICAL ENGINEERING	CO 4: Appreciate the importance of SMPS and UPS for computers
14992103	AND ELECTRONICS	outcomes, Every engineer should know the basic knowledge of
	ENGINEERING	electronic components in our real life, like a simple diode is used in
		rectifier that is convert AC to DC and mainly used in adapters.
		component in electronics usage of like amplifier, TV's, Radio's.
		Most important measuring instrument that is CRO .Now a days most
		used microprocessor application like Calculator, CPU, and Robotics
		CO7. Ability to identify the electrical components explain the
		characteristics of electrical machines
		CO 1: Students understands the relationship between the
		structure, properties of metallic, non metallic, ceramic and
14032104	MATERIAL SCIENCE AND	composite materials.
	ENGINEERING	CO2: Students understands materials and heat treatment methods
		for various industrial applications.
		the different materials, their processing, heat treatments in suitable
		application in mechanical engineering fields.
		learning outcomes, a number of homework problems are assigned,
		graded and handed back to the students.
14032105	BASIC THERMODYNAMICS	the Thermodynamic Principles to Mechanical Engineering
1.002100		Application.

matical fundamentals to study the properties of
mixtures
nachines are made by assembling different parts,
Students know how to join.
d examples on assembly drawing are practiced to
a comprehensive idea to the students
ions at the end of each topic help students in the
their career.
s quickly for short quizzes and to answer well in
rge number of unsolved problems for practice are
thorough grasp on the concepts of the drawing
netallic, non metallic, ceramic and composite
materials.
aracteristic materials.
rform different destructive testing.
rform speed characteristic of different electrical
e, BJT and JFET VI characteristics
ener diode as regulator and full wave rectifier
-
gle stage BJT amplifier and single stage JFET
RC phase shift oscillator's performance
understand Professional ethics which includes
l virtues, social responsibilities of an engineer
knowledge of introductory probability and
appreciation of the fact that lack of complete,
owledge about the state of a system does not
an lack of knowledge altogether.
w to build probabilistic models that describe
information. And learn how to update these
as additional information is obtained.

		CO4. Develop problem-solving approaches to learning and
		acquiring information through sampling
		CO5. Understand how redundancy of functional components
		of a system and the general system architecture affect system
		reliability.
		engineering & industry using the techniques of testing of hypothesis, ANOVA, Statistical Quality Control and Queuing theory and draw
		learning outcomes, a number of home work problems may be assigned, graded and handed back to the student.
14012202	ENVIRONMENTAL STUDIES	knowledge about the environment in which we live in land resources and its importance, forest, water and energy resources and how it rectifies transportations, Industrialization on the quality of environment and do the various projects on case the environmental problems in drinking water ,sanitation and public health, Effects of
		mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
		CO5 Development and improvement in std. of living has lead to
		serious environmental disasters
		properties and their engineering significance. The student is able to differentiate between different pressures and study the methods of fluid pressure measurement. Calculation of forces on different surfaces is also known to the student.
		fundamentals of fluid flow and its description. The student is exposed to the fundamental equations, used in the analysis of fluid flow problems like continuity, energy and momentum equations.
14112203	MECHANICALS OF FLUIDS	flow and the conditions governing them. Equations related to different flows are derived and the student gets to understand the working of the different devices used for measurement of fluid flow
		CO4. At the end the student shall have understanding of the boundary layer and its significance along with the various concepts of boundary layer like its growth, thickness and separation.
		importance of the forces exerted by the fluid on the body and vice

		versa. These concepts will be helpful to the student in understanding the effect of these forces on flatplate, sphere, cylinder and airfoil.
		The student is also exposed to engineering applications of the
		CO1. After completion students are in a position to identify
		different mechanisms, inversions of different kinematic chains and
		CO2. After completion students are able to understand the
		mechanism of Hooke"s joint, steering mechanisms and belt friction.
	KINEMATICS OF	acceleration diagrams of simple plane mechanisms by using relative
1402204	MACHINERY	velocity method and instantaneous center method.
		diagram and cam profile for different types of motions of the
		follower. And also to find the displacement, velocity and
		acceleration of the follower at different positions of cam with
		terminology, types of gears, length of path of contact, contact ratio
		and interference in gears. Further students are also able to design the
		help of indicator diagrams. Student can differentiate the working of
		2-S and 4-S engines and also can draw valve and port timing
		diagrams. Student can know applications of IC engine in the
		lubrication and ignition systems. Student can understand how
		auxiliary systems play key role in increasing the performance of an
		cylinder, stages of combustion in S.I and C.I engines. Student can
		understand the knocking phenomenon. Student can know about
14032205	THERMAL ENGINEERING – I	Octane number and Cetane number of fuels and properties of fuel.
		and friction power and their methods of measurement. Student can
		understand the methods to increase the engine performance. Also,
		student can know calculating specific fuel consumption, A/F ratio
		and mean effective pressure and estimating heat losses etc.
		rotary air compressors. Student can calculate work done by single
		and multistage reciprocating air compressors. Student can
		understand how intercooling reduces the work done / kg of air.
		of patterns and gating systems, moulds, methods of moulding,
		moulding machines and solidification of castings of various metals.
		methods and their applications, design of risers and feeding systems,
		crucible melting, cupola operation and steel making process. The
		students may also be able to design a casting process on his own.

14032206	MANUFACTURING TECHNOLOGY	processes, welds and weld joints, their characteristics, cutting of ferrous and non-ferrous metals by various methods.
		CO4. Students can understand about advanced welding process,
		heataffected zone(HAZ), Defects and Identification Methods.
		CO5. Students can understand the various surface treatment
		processes.
		CO1: Apply knowledge of compression and tension test procedure
14112207	FLUID MECHANICS AND	on materials.
11112207	HYDRAULIC MACHINES LAB	CO2: conduct performance tests on pumps and turbines and draw
		the performance curves.
		CO1: Operate lathe and make parts by performing plain turning,
	MANUFACTURING TECHNOLOGY	taper turning, eccentric turning and thread cutting operations.
14032208		CO2: Students can understand different welding processes.
		CO3. Students can understand the pattern making, sand compression
		strength test etc
		organizations, Management Principles, Concepts and various Schools
		of Thought on Management, and also the various types of
		Organizational Structure need to be followed based on size, type of
	INDUSTRIAL MANAGEMENT	quantitative parameters for locating a plant and decide on plant
		layouts and optimization.
14033101		study,work simplification,standardization and improving the method
		of doing work and also setting time standards for doing work and
		procedures to arrive at the standard time.
		functions of HRM, methods of Performance Evaluation, Wage and
		Incentive Calculation. They will also know the Difference between
		Inspection & Quality Control, Statistical Quality Control Techniques,
		TQM, BIS &ISO and also functions of HRM.
		CO1.Student can be able to illustrate the power generation through
		Rankine cycle. Student can able understand efficiency enhancement
		methods of Reheating and regeneration. Student can able to
		understand the key role of quality of steam after evaporation.
		pressure and low pressure boilers. Student can distinguish mountings
		and accessories. The student can calculate the chimney height for
		maximum discharge. Student can know the draughts and its

		application in the steam generator.
14033102	THERMAL ENGINEERING II	CO3.Student can be able to distinguish the ideal flow and actual flow through nozzle. Student can know the importance of maximum discharge through nozzle. Student can able to entail the concept of Critical pressure ratio in calculations. Student can able to understand the effect of meta stable flow/ Super saturation flow through nozzle.
		reaction turbines. Student can able to construct the velocity triangle and combined velocity triangle and can learn its importance in determining the power produced by the turbine. Student can know why to reduce the rotor speed and methods to reduce.
		CO1. Student can able to understand different types of gear trains.
		like belt, rope, chain etc
14033103	DYNAMICS OF MACHINERY- I	CO3. Student can able to understand brakes and dynamometers.
		CO4. Student can able to understand the concept of turning moment diagrams, flywheels and punching press.
		CO5. Student can able to understand working of different Governors.
		philosophy of metal cutting and the mechanism of chip formation. Student will understand the interface in the machining zone between the tool and the work piece and how the physical and mechanical parameters dictate the cutting performance.
14033104	MACHINE TOOLS	shaping and planning operation, parts of the drilling, shaping and planning machines and tool holding devices, operations performed on drilling, shaping and planning and machining calculations.
		grinding, Lapping, Honing and Broaching \ operation, parts of the milling machine and types of milling and grindingmachines.
		CO1.Students are capable to apply design procedures using theories of failure for different elements.
		CO2.Students are able to design simple components under cyclic loading using Goodman's and Soderberg's criterions.
14033105	DESIGN OF MACHINE ELEMENTS-I	configuration, boiler shell joint design and eccentric loading design of riveted joints. Further students are able to design bolted joints

		with direct loading and eccentric loading.
		CO4.Students are able to design cotter joint, knuckle joint and
		shafts.
		CO5. After completion of this unit students are able to design
		various rigid and flexible shaft couplings.
		CO1. Student can able to grasp the concept of steady state
		conduction. Studentcan learn representing conduction equation in
		various forms.
		CO2.Student is expected understand the concept of extended
		surfaces and its applications. Also, student can aware transient heat
		conduction and how it vary w.r.t time.
1/033106	ΗΕΔΤ TRANSFER	natural convection heat transfer problems by transforming the
14055100		physical system into a mathematical model, selecting an appropriate
		solution technique and evaluating the significance of results.
		Students will also demonstrate an ability to analyze the
		calculate heat transfer in condensation and boiling systems, turbulent
		and laminar film condensation. Student can understand the concepts
		of critical heat flux and different models of critical heat flux. Student
		can able to grasp the fundamentals of heat exchangers and its
	ADVANCED ENGLISH	CO1.Students improving the proficiency in English at all levels.
14243107	COMMUNICATION SKILLS LAB	group discussions, to help them face interviews, and sharpen public
		speaking skills and enhance the confidence of the student by
		exposing him/her to various situations and contexts which he/she
14033108		CO1. Ability to conduct experiment on IC engine to study the
		characteristic and performance of IC engine.
	THERMAL ENGINEERING	CO2. Students are able to understand the value timing-V diagram
	LAB	and performance of IC Engines
		CO3. Students are able to understand the characteristics of
		fuels/Lubricates used in IC Engines
		CO1. Students are able to understand concepts and tools of
		economic analysis.
		CO2. Students are able to understand managerial economics
	MANAGERIAI ECONOMICS &	through differential economics concepts, accounting concepts are

14253201		necessary to analyze and solve complex problems relating
	FINANCIAL ANALYSIS	CO3.Students are able to understand professional and ethical
		responsibility and ability to communicate effectively.
		CO4.Sudents Recognized the need for, and an ability to engage in
		life-long learning and to meet contemporary issues.
		real life situations and capable of obtaining best solution using
		Graphical Method and Simplex Method.
		simplifying the solution procedure for certain LPPs, and solve the
		special cases of LPP such as Transportation and Assignment
14022202	ODED ATIONS DESEADOU	problems. A large number of problems are to be solved by the
14033202	OPERATIONS RESEARCH	student in order to gain much required capability of handling the
		CO3. The student will have knowledge of choosing the best strategy
		business manager to successfully face the competition
		technique to solve the complex, problems by breaking them into a
		series of sub-problems
		CO1:- Students can apply gyroscopic principles on Aeroplane ship
		four wheel and two wheel vehicles
14033203	DYNAMICS OF MACHINERY -	rotating masses and reciprocating masses in V-engine and multi
		cylinder engines.
		degree offreedom systems with free and forced vibrations, evaluate
		the critical speed of the shaft and simple vibration calculations of
		rotor systems.
		CO4.Students undergo for more number of problems on single
		degree of freedom system, transverse and torsional vibrations.
		with refrigeration and also understand the basic principles of
		Refrigeration and applications. Student can also know the aspects of
		various natural refrigeration methods; understand the components of
		Air refrigeration system and the necessity of air craft refrigeration.
		the components in the domestic retrigerator, analyzing the concepts
		or sub-cooling and super heating to improve the COP and also
		components of the charmetion refrigeration system. Student con
	REFRIGERATION AND AIR	have knowledge on latest developments of Electrolyy, thermo
1/03320/		nave knowledge on latest developments of Electronick, menno

in Air conditioning Student can learn the use of r	
in 7 in conditioning. Student can feature use of p	sychrometric chart
to know psychrometric properties of air.Stud	ent can able to
understand the terms sensible heat load and late	nt heat load. This
technical information is fundamental to all typ	es of domestic,
commercial and industrial systems for the calculat	tions of heat loads.
describe the cooling equipment combinations. St	udent can describe
the concept of human comfort chart and the proce	esses by which the
body produces and rejects heat	
rollerNbearings and to know the advantages o	f rolling contact
bearings against sliding contact bear	rings.
CO2.students are able to know various forces ac	ting on I C engine
parts and Bfailure criteria to be adopted for	various parts.
14033205 DESIGN OF MACHINE CO3.students are able to design crane hooks, C-cl	amps and various
ELEMENTS-II belt, rope and chain drives.	
and laminated springs for trucks. Also students	can apply design
concepts in designing power scree	WS.
CO5.students are able to design spur and helical g	ears for different
	(1.1 C
component of an automobile. Student can unde	rstand the use of
turbo charging and super chargin	lg.
Student con identify thrust cross for corruing the	ctrical systems.
14033206 AUTOMOBILE ENGINEERING COS.student can have broad knowledge on e	ach and every
CO4 student can able to understand purpose and t	nethods of
steeringsystems and their applications	liethous of
CO5 Student can have ample knowledge on sush	ension system and
braking system of an automobil	e
CO1. students can understand the fundamental t	orinciple.
operation. performance of IC Engines. auxiliary	v systems,
combustion of SI & CI engines, various fuels us	ed and engine
emissions.	0

		CO2.students acquired the knowledge of engine components and
		fuel air cycles.
14033207	INTERNAL COMBUSTION ENGINES	CO3. students can understand the working of engine auxiliary
		systems.
		CO4. Students can understand the combustion aspects of SI
		Engines
		CO5. Students can understand the combustion aspects of CI
		Engines.
		CO6. Know the various alternate fuels, engine emissions,
		measuring and control techniques
		opportunities and importance of woman to become an entrepreneur.
		It also gives the clear view of how a venture needs to be established
		with the available resources.
14033208	ENTREPRENEURSHIP	CO2. Students can understand the financing & managing the capital
		& venture expansion strategies,
		Entrepreneurship. It also gives the information on location of plants
		& various public issues, material handling & production
		CO1.Ability to handle different measurement tools and perform
		measurements in quality impulsion.
14033209	METROLOGY AND MACHINE	
14033207	TOOLS LAB	CO2. Student can operate slotting, shaping and drilling machines;
		CO3: Students can understand different operations on slotting,
		shaping and drilling machines.
		CO1. Ability to demonstrate the principles of kinematics and
		dynamics of machinery.
14033210	HEAT TRANSFER AND	
	DYNAMICS LAB	CO2. Ability to use the measuring devices for dynamic testing.
		coefficient used in that transfer application and also design
		refrigeration cycle.
		components of CAD/CAM, input and output components of CAD,
		Steps involved in computer aided design.
		component in CAD technology of computer graphics. The
		techniques of raster technology, scan conversion, clipping, removal
		of hidden lines and hidden surfaces, color, shading and texture.

14034101	CAD/CAM	complex part in most of CDA software packages. Hence the students should focus on various requirements of information that are generated during geometric modeling stage, various types and its applications. Mathematical representations of curves used in benefits of mass production to relatively smaller production. Understanding the need of computers in process planning and
		QC.Understanding the definition and concept of FMS, and its
	METROLOGY	CO1.students are able to understand the Limits, Fits and Tolerance. Indian standard system – International Standard organization system.
14034102		commonly used instruments for measuring linear and angular distances.
14034102		optical measuring instruments, flatness measurement methods and measuring methods of surface roughness.
		measuring methods, Gear tooth profile measurement, CMM, Alignment tests on lathe, milling and drilling machinetools.
		CO1.students are able to know introductory basic principles and approaches for solving FEM problems in different fields.
	FINITE ELEMENT METHODS	CO2.students are able to formulate FEM model for simple problems.
14034103		CO3.students are able to write interpolation functions to higher order isoparametric elements.
		principles to find stresses in beams and trusses and temperature distribution in composite walls and fins.
		problems using FEM and also to apply boundary conditions in realistic problems.
	INSTRUMENTATION AND CONTROL SYSTEMS	CO1. student can select appropriate device for the
		measurement of parameters like temperature, pressure, speed,
14034104 INSTRUMENTATION CONTROL SYSTEM		stress, numberly, now velocity etc., and justify its use unlough $CO2$ students are able to understand, fundamentals of various
		types of Transducers.
		CO3. students are able to understand principle & working of
		Transducers
		CO4. students are able to understand the methods to analyze the
		stability of systems from transfer function forms.

		controls operations and its functions, productivity and productivity
		measurements, design of goods and services and aggregate planning.
		long term and short term forecasting and application of qualitative
	PRODUCTION AND OPERATIONS MANAGEMENT	and quantitative methods for finding the future demands.
		located based on facilities available and what are the important
		factors affecting the facilities location of a plant, and plant layout.
		And also able to understand plant layout design to facilitate material
14034105		flow and processing of a product in the most efficient manner
		through the shortest possible time. Can compare the rural & urban
		management applied to develop lean enterprise and basic concepts
		JIT, Six sigma control etc.,
		flow shop and job shop scheduling techniques and concepts of
		Inventory, Classification, Functions, it's associated costs etc., and
		also able to recognize the importance of Inventory control to ensure
		their availability with minimum capital lock up.
		of numerical methods adopted. Students also discusses about
		various solutions for the numerical methods adopted in CFD.
		equations, including the governing flow equations which is the
		foundation for the finite difference method. Explicit and implicit
		approaches represent the fundamental distinction between various
		and how the numerical calculations become unstable and also entails
14034106	DYNAMICS	the conservations of mass, momentum and energy equations to the
		fluid flow along with Navier stokes equation.
		mechanics, its governing differential equations and boundary
		conditions.
		solutions for flow problems. These equations are applicable to time
		and space marching solutions especially parabolic hyperbolic and
		elliptic equations.
		and controlling the various machines, robots etc. Students may
		observe CNC machines in CAD/CAM lab to understand the
		mechatronics concepts.
		useful required form. These signal condition systems may be
		observed in electronics and communication engineering department
		about some precisions mechanical component which are useful in

14034107	MECHATRONICS	the field of automation. This automation system can be observed in many processing industries and manufacturing industries to handle the materials and control the machines (or) process.
		used in automation. Some of the systems may be observed electrical and electronics labs for better understanding.
		of programmable logic controls. Students may visit pharmaceutical industries, thermal power plants etc. To observe the PLC based control systems, to know about the interface between processing
	MODERN MANUFACTURING METHODS	machiningprocesses, features, classifications and applications of non- traditional methods.
		CO2.students are able to understand the processes of USM and AJM, process parameters, application and limitations.
14034108		and applicable in manufacturing environment in terms of accuracy, surface finish and MRR and their relative advantages and disadvantages. He has to understand the chemical machining
		metal removal processes, principle of working, accuracy in machining, surface finish, tool selection and other machining
		electron beam and laser beam in manufacturing environment, accuracy, machining speed and etc, with respect to all non- traditional machining processes.
14034109	TOOL DESIGN	tooling materials, processing of plastics for tooling materials, heat treatment of materials, ferrous, nonferrous, non metallic, tooling materials.
		CO2.students are able to understand single point cutting tool geometry and its design theory of chip formation.
		CO3.students are able to understand the drilling tool geometry and its design.Tool life, machinability and tool wear.
		and advantages and disadvantages of Jigs and fixtures, types of Jigs & Fixtures – Principles of location and clamping. Some examples of jigs and fixtures.
		like punching, blanking, bending, drawing and forming, types of power presses, design of die, strip layout.
		suited to the demand. Student can have an idea of various power plants. Student can understand economics of power distribution,

		Power Tariff, Load Factor and other related terms.
		concept of fluidized bed combustion and importance of handling and
		storage. Student can able to learn the waste heat recovery methods.
	POWER PLANT ENGINEERING	In addition, student can know various cooling towers and its
1/03/110		turbine plants. Student can distinguish Open cycle and closed cycle
14034110		gas turbine cycles.
		to understand the methods of storing water and can have an idea
		over constructions of dams and spill ways. Student can enable to
		draw the layout of hydel power plant.
		secondary energy sources. Student can able to understand the power
		generation through solar energy, wind energy, MHD and Nuclear
		energy.
		CO 1.students will be able to calibrate instrument and conduct the
14034111	INSTRUMENTATION AND CONTROL SYSTEMS LAB	experiments with minimum error in measurements.
1.00.111		CO 2. Students will be able to assess the properties of oils for
		suitability to various applications.
	CAD / CAM LAB	CO1: students will be able to develop and model mechanical
14034112		system using CAD packages.
		CO2: students will be able to simulate and execute part program
		in CNC machine.
		types of automation, components of automation, strategies and levels
		of automation.
		quantitative analysis of flow lines, how the assembly is carried out
14034201	AUTOMATION & ROBOTICS	on automated flow line without interruption and how to balance the
		line and flexible assembly lines.
		CO3.Student should come to know the various components in the
		anatomy of robot. By knowing this the student may apply in the
		design of new robotic structure.
		which may adopt in different applications of robot. Student also
		knows the control motion mechanism in all devices of robot and
		CO 1: students will be able to develop skills for designing and
		instaining the energy conversion and justify
		storage systems

14034202	RENEWABLE ENERGY SOURCES	CO 2: students will be able to explore the resources of bio energy
		CO3.students can able to identify the new methodologies
		/technologies for effective utilization of
		renewable energy sources.
		CO1.student can analyze the simple gas turbine cycle in determining the specific work and fthermal efficiency. Also, student can able to know the methods in improving them is using combinations of reheating as well as regeneration.
14034203	GAS TURBINES AND JET PROPULSION	CO2.student can able to understand the basic principle of jet propulsion. Also, student can able to know the working of various Pilotless and piloted propulsion devices.Student can under stand thrust equations, calculating propulsive power, and propulsion efficiency.
		CO3.student can analyze the working of ramjet engine thermodynamically. Student can aware the calculations related to efficiency. Student can distinguish the working of Ramjet from Pulsejet and Serquijet engines.
		CO4.student can able to understand the working of rocket engine. Student can have knowledge on propellants of rocket engines. Student can aware of parameters affecting the parameters of performance. Student can get difference between various domains of application.
		Student can know advanced topics of rocket transfer, ablative cooling. Student can understand the importance of cryogenic engine
14034204	GEOMETRIC MODELLING	CO1.student can able to understand to produce engineering drawings.
		CO2.student can able to understand applications of geometric modeling techniques
		CO3.student can able to understand modeling complex curves and surfaces.
		CO1.student can able to understand the need of composite materials and know the properties, types and applications of various types of composites.

14034205	COMPOSITE MATERIALS	CO2.student can able to understand the Types of polymers Thermosetting and thermoplastic resins etc, types of fibers and manufacturing methods of polymers.
		CO3.student can able to understand the various types of metal composites and difference between alloy and metal composites, and
		manufacturing methods of metal composites.
		CO4.student can able to understand the properties advantages,
		limitations of ceramics, types of ceramics and manufacturing
		methods of ceramic composites.
		limitations of carbon composites and manufacturing methods of
		carbon composites.
		CO1. student should be able to apply ethics in society, discuss the
14034206 II	PROFESSIONAL ETHICS AND INTELLECTUAL PROPERTY RIGHTS	ethical issues related to engineering and realize the responsibilities
		and rights in the society
		CO 2: students will be able to develop an ethical behavior under all
		situations.
		CO 3: students will be able to estimate the impact of self and
		organization's actions on the stakeholders and society.