8 %
Certificate Course

On
IOT with Python Programming

Faculty Coordinators: Dr. S. Zahiruddin

Smt. K. Divya Lakshmi
Duration: 16/08/2020 to 29/08/2020



K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Lr/KSRMCE/ (Department of ECE)/2020-21

Date: 10-08-2020

To

The Principal

KSRM College of Engineering
Kadapa, AP.

Sub: KSRMCE - (Department of ECE) - Permission to conduct certification course on IOT with Python
Programming —Request- reg.
LR

Respected Sir,

With reference to the cited, the Department of ECE is planning to conduct a certification course on
IOT with Python Programming for B.Tech I1I SEM ECE students from 16-08-2020 to 29-08-2020 in online
mode. In this regard, we kindly request you to grant permission to conduct certification course. This is
submitted for your kind perusal.

Thanking you sir,
Yours Faithfully,

C‘é' mat\oré @‘M Ll

Dr. S. Zahiruddin,
Smt. K. Divya lakshmi.

Ce:
To The Director for Information P | = "
N N

To All Deans/HODs . S Q’%\

~ 0¥ > 4 :

3 . AP\ S N

\ A c - 0@:@\9 9>

7N ¢ ap°

e

0 -
€5 /ksrmee.ac.in Fol!oif#}'&gﬂ @ W /ksrmceofficial




K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Date: 10-08-2020

Circular

All the B.Tech 11 sem ECE students are hereby informed that the department of ECE is going to
conduct 40 hours certification course on [OT with Python Programming from 16-08-2020 to 29-08-2020.
. Interested students may register their names with following link on or before 14-08-2020.

Registration Link: https://forms.gle/ZVmRhnPbktsRknUt89

For any queries contact, i
|

U: S.S. A |y
- 1

Coordinator Principal

: iruddi PRINCIPAL
Dr.S.Zahiruddin, i i o ENSiNEERiNg
Smt.K.Divya lakshmi . KADAPA - 518 003. (A.P.)

. Cc to:

The Management /Director / All Deans / All HODS/Staff / Students for information
The IQAC Cell for Documentation

7
{

X
=

D /ksrmce.acin - Follow Us: B3 @) w9 /ksrmceofficial




Approved by AICTE, New Delhi
An ISO 14001:2004 & 9001: 201

(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003

K.S.R.M. COLLEGE OF ENGINEERING

& Affiliated to JNTUA, Ananthapuramu.
5 Certified Institution

Department of Electronics & Communication En ineerin
Certificate Course on 10T with Python Programming

Registered Student List

'S.No. Roll Number | Name of the Student Year & Email id —!
[ | Branch
‘_I 199¥1A0401 | AKULA VENKATESH _|BCE o | 199Y1A0401 @losrmee.acin
° 2 199Y1A0402 = N NOUIHESIWARL T ey
3 A0S | G ATAL A AV YA SHEE (L O DB e
Y 199Y140407 | AYY ;&%%ﬁfg%ggy o o T e
s 199Y1A0408 gﬁﬁféqMUDRAM e por Lee, | o v ok ke
6 LOSRIAIDS! | o e gg;;"h fsem, | 199v140409@ksmce.ac.in
‘ 199Y1A0411 33%?5&% g(':Tg"h RS | ot AGA T s e i
!T‘ | 199Y1A0412 g;{xggxggum sroctlilsemy 1 og s ok o ac i
% [ 199v140413 ?ﬁ?{%ﬁ%ﬁﬁfum Eng"h TS, | 1901 AD413 G karmoesaniin
° 0 199v1A0414 BORKASAMSAT DEEPAR. | B oss el oo A oMl Gt s n
e 199140415 SBE&ﬂTvHEgEKggé e L, o A e e
12 1 199y140417 CJASHWANTH VARMA | Bon L Se™: | 100v1 A0417@ksrmce.ac.in
B 199v1A0418 %&i‘g{gggfm po lisems | oo IR B s
4 1 199v140419 %ﬁ%ﬁ STEEHEN e T T R
B 1 199v140420 TRl ggg"h Tsem, | 99v140420@ksrmes.ac.in
16 | 199v1A0421 (C\;/I)AWA S oLSNVITHA g&em Msem, | 199v1A0421 @ksrmes.ac.in




o 199Y1A0422 %{BEI;ATI WERAPRASAD Egg"h Hlsem, | 199y1A0422@ksrmee.ac.in
18 199Y1A0423 g‘ggggﬁﬁgm GURH Egg"h MIsem, | 199v1A0423@ksrmee.ac.in
iy ODVEROA { oomn ot it s plechlllsem. 1 199v1A0424@ksrmee.ac.in
20 Ea T R Sl ggg"h [Isem, | 99y1A0425@ksrmee.ac.in
A JSOTIRGEA o o o lLsem, | 199v1A0427@ksrmee.ac.in
A 199Y1A0428 %%AULA G g Egg"h Hlsem, 1 199y1A0428@ksrmee.ac.in
= IS IApday | oo FIRRERIR ERRA B lechllsem, | 199y1A0430@ksrmee.ac.in
24 199Y1A0431 &i@ggﬁ{ﬁz’?@%l g gg‘:h lEsem, | 99y1A0431@ksrmee.ac.in
- 199Y1A0432 | 1) \DE MOUNIKA (W) ggg‘:h HIsem, 1 199y1A0432@ksrmee.ac.in
o4 RSO e i i léggch Msem, | 99y1A0433@ksrmee.ac.in
& 199Y1A0436 ](3“1:;)" ARASEETY HARGRIYA | B- el iU S8 | 109w dsiegiemmicsoin
28 I9OTIABIEY |l LB D lechTlsem, | 199y1A0437@ksrmee.ac.in
g 199Y1A0440 | &\ 0 s UPENDRA ggg“h Hlsem, 1 99y1A0440@ksrmee.ac.in
A0 199X AL | s pIechHILSem. | 199140441 @ksrmee.ac.in
2 199Y1A0442 ?&ﬁgﬁgﬁ’%m D sehlilsem, | 199v1A0442@ksrmee.aciin
- ISONMTRDHE: | ey o v }E:él"gch lsem, | 199v1A0443@ksrmee.ac.in
- 19910444 | SAPIDICOTA o B Tech Tsem, | 199y1A0444@ksrmee.ac.in
L TOORIAGHE. |5 r e (%I B lechlllsem, | 199y1A0446@ksrmee.ac.in
- 199Y1AO448 | 011 4 brASANNA KUMAR | mope ™ | 199Y1A0448@ksmee.acin
3 OBTARIY. S ggg"h lIsem, | 1 99y1A0449@ksrmee.ac.in
oL Lyt S ——— poeeh Hllsem, | 199v140450@ksrmee.ac.in
e 199Y1A0451 gg&lggi%% ;f(f’m o echlllsem, | 199v140451@ksrmee.acin
¢ IOVIAMEE oo o oo s Blechllsem. | 199v1A0452@ksrmee.ac.in
S 22D S N T L RER E'CTEeCh Msem, | 199y1A0456@ksrmee.ac.in
41 [00yiAGdsy |EADAVAKUTESOWMYA | B.lecnllbsem, | j5o51aAniso@ksmoemcin

PRIYA (W)

ECE




L UGS TACHN | v ot s o Egg"h lsem, | 199y A0460@ksrmee.ac.in
i BEEIAMAL [ s ot prechlllsem. | 199v1A0461@ksrmee.ac.in
e 199Y1A0463 ?\%LUVALA e Egg“h HIsem, | 199y1A0463@ksrmee.ac.in
= ieh o7 T S BTechIllsem. | 199v1A0464@ksrmoe.aciin
% 199Y1A0468 | 1 4 vaM VINAY ggg‘;h Msem, | 199v1A0468@ksrmee.ac.in
2 IOFYIADAT | st moa & s atRAN BTechTllsem, | 199y140471@ksrmee.acin
& 199Y1A0473 ggggﬁﬁfgﬁ?ﬁgﬁiﬁ% BIechIllsem, | 199y140473@ksrmee.acin
& 199Y1A0479 | SUNDHARARU BTechIllsem, 1 199y140479@ksrmoe.ac.n
A OTIADARE | s et LA Blechlllsem. | 199v1A0483@ksrmee.ac.in
% (OOTAMER | oo coivrs ot e Blechillsem. | 199v1A0484@ksrmoe.aciin
2 OYTIAGIES | e B TechHlLsem, | 199y1A0485@ksrmee.ac.in
23 TSGR (e p—— Blechlllsem, | 199y140487@ksrmoe.ac.in
> 199Y 1 AO4E3 é’:{%IESIgOHAMMED EgE“h M'sem, | 1 99y1 AO4E3@ksrmee.ac.in
= 199Y 1 AO4E4 %TS‘%I;’IOHAWED ggg"h lIsem, | 99y AO4E4@ksrmee.ac.in
6 199Y1A04ES ?ﬁ#ﬁ:’l&”‘ﬂm B Techlllsem. | 199v1A04Es@ksrmee.ac.in
o [SPYBABIES | o st moitio e ars e BTech Illsem. | 199y1A04E6@ksrmee.ac.in
. 199Y1A04E7 | SHAIK RUMMESA KOUSAR | B-TechIllsem, | 19y 04E7@ksrmee.ac.in
(W) ECE
37 (BOEATIER | s cayale AL BTech HIISem, | 199v1A04E8@ksrmee.ac.in
s BORIATEN e e e B1echIllsem. | 199v1A04E9@ksrmee.ac.in
= 199Y1A04F0 S{?[?}?Ir?s{fm B TechTllsem. | 199Y1A04F0@ksrmee.ac.in
64 199Y1A04F1 ilggﬁﬂigs’\MEER Egg’h lsem, | 199y1A04F1 @ksrmee.ac.in
g 199Y1A04F3 | SR e ] B Techlllsem. | 199y1A04F3@ksrmee.acin

QM

oLtk V.S .5 Mulg
Ktoordm or & Principal AL
rofessor g 4y, 0.p. PR!NCIPF ENGKNEER‘NG

ulD;mmc:qrit W ECE




Internet of Things with python programming

40Hrs
Course Objectives:

Learn the basic python programming.

Understand Raspberry Pi hardware and its relevant software.

Gain knowledge to verify working of simple sensor circuits with Raspberry Pi.
Understand the Internet of Things.

e o o o

Course Outcomes:

The students will be able to:

Learn the python programming language and IDE

e Prototype circuits and connect them to the Raspberry Pi

e Program the Raspberry Pi board to make the circuits work
e Analyze the internet of things

Module 1: Python Programming part 1

Introduction-History, Features, Setting up path, working with Python, Basic Syntax, Variable
and Data Types, Operator; Conditional Statements-If, If- else, Nested if-else; Looping-For,
While, Nested loops; Control Statements-Break, Continue, Pass; String Manipulation-
Accessing Strings, Basic Operations, String slices, Function and Methods; Lists-Introduction,
Accessing list, Operations, Working with lists, Function and Methods; Tuple-Introduction,
Accessing tuples, Operations, Working, Functions and Methods.

Module 2: Python programming part 2

Dictionaries-Introduction, Accessing values in dictionaries, working with dictionaries,
Properties, Functions; Functions- Defining a function, Calling a function, Types of functions,
Function Arguments, Anonymous functions, Global and local variables; Modules- Importing
module, Math module, Random module, different type of Packages, Composition; Input-
Output- Printing on screen, Reading data from keyboard, Opening and closing file, Reading
and writing files, Functions.

Module 3: The Raspberry Pi and its uses

Introduction (Video),Raspberry Pi Board (Updated), Raspberry Pi Processor, Raspberry Pi
vs. Arduino (Updated), Operating System Benefits, Processes, Raspberry Pi IoT, Raspberry
Pi Setup, Raspberry Pi Configuration, Overclocking (Updated),Introduction (Video), General
Purpose IO Pins, Protocol Pins, GPIO Access, General Purpose 10 Pins , Pulse Width
Modulation, Demo of a Blink, Graphic User Interface, Tkinter Library, Interaction.

Module 4: Introduction to Internet of Things

What is IoT, how does it work, Difference between Embedded device and ToT device,
Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution




Architecture Models, How IoT is Transforming Businesses, Major [oT Boards in Market and
Explore Raspberry Pi.

Module 5: Setting up Raspberry Pi and Sensors (Sense HAT Board)

Setting up Raspberry Pin Showing working of Raspberry Pi using SSH Client and Team
Viewer, Understand Sensing actions, Understand Actuators and MEMS, Programming Sense
HAT Board

Build a weather station using Sense HAT and Python, Prepare google spreadsheet for weather
data collection ,UnderstandOpenCV.

Text book:

1. Python Crash Course: A Hands-On, Project-Based Introduction to Programming by
Eric Matthes, No starch press 1% edition.

Reference:

1. Think Python How to Think Like a Computer Scientist by Allen B. Downey, O Reilly
media 1% edition.
2. https://www.voutube.com/watch?v=LlhmzVL5bm8&=1s: Internet of things

https:/www.guru99.com/iot-tutorial.html: IoT for beginners

Wl

4. https://www.tutorialspoint.com/internet_of things/index.htm: IoT absolute beginners

L
Professor g H.0.p.

Rpy ey tOfECE.
’ Coliege of Engm“ﬂng
APA - 515 003




K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTON OMOUS)
Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated to INTUA,
Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Electronics & Communication Engineering

Certificate Course on 10T with Python Programming

Schedule
S.No Date Time Faculty Topic
. 1 16/08/2020 | 4 PM to 6PM Dr.M.V Narayana Inaugration
Dr.S.Zahiruddin :

Smt.K.Divya Lakshmi

2 | 17/08/2020 | 3 PM to 5PM Dr.M.V.Narayana Introduction to IOT and Python

Programming

3 18/08/2020 | 3 PM to 6PM Dr.M.V .Narayana Basic Linux Commands

4 | 19/08/2020 | 3 PM to 6PM Dr.M.V.Narayana Linux directory commands
|
i 5 | 20/08/2020 | 3 PM to 6PM Dr.M.V.Narayana Linux file commands and file
S 5 content commands
| 6 [21/08/2020 | 3 PM to 6PM Dr.M.V.Narayana Linux user commands
7 [ 22/08/2030 | 3 PM 1o 6PN Dr.M.V Narayana Linux filter commands

. 8 | 23/08/2020 | 3 PM to 6PM Dr.M.V.Narayana Linux filter commands
9 | 24/08/2020 | 3 PM to 6PM Dr.M.V Narayana Linux network commands
10 | 25/08/2020 | 3 PM to 6PM Dr. S.Zahiruddin Introduction to shell

programming: basic shell
concept, types of shells, vi
editor, setup execution
permissions, example scripts,
execute script

11 | 26/08/2020 | 3 PM to 6PM Dr. S.Zahiruddin Shell variables, user defined
variables, read statement, shell
arithmetic, expressions




’ 121 27/08/2020 | 3 PM to 6PM Dr.M.V.Narayana Control structures
[ 13 ] 28/08/2020 | 3 PM to 6PM Dr. S.Zahiruddin Functions, Loops: for, while and
| until, break, continue

14 129/08/2020 | 3 PM to 6PM | Smt. K.Divya Lakshmi

Passmg arguments to scripts,
pipes, Exam and certificate

distribution
Pho Q M V. s sl
K r&l tor Principal
"’Qﬁt“ PRINCIPAL

tﬁPE‘@ AN

“%m
Rm

~e Gib EERlNG
M. COLLEGE OF ENG!
l'“'S'Rm:.m:».w\ 516 003. (A.P)




K.S.R.M. COLLEGE OF ENGINEERING

(UGC-AUTONOMOUS)
Kadapa, Andhra Pradesh, India- 516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu,
An ISO 14001:2004 & 9001: 2015 Certified Institution

ACTIVITY REPORT

Certification Course
On
“1OT WITH PYTHON PROGRAMMING>

16" August, 2020 to 29" August, 2020

Target Group - Students
Details of Participants : 63 Students
Co-ordinator : Dr. S. Zahiruddin , Asst. Prof, Dept. of ECE

Smt. K. Divya Lakshmi, Asst. Prof, Dept. of ECE

Organizing Department : Department of Electronics & Communication Engineering

Venue : Online mode (Google meet)

Description: Certification course on “IOT WITH PYTHON PROGRAMMING” was organized by Dept. of
ECE from 16™ August 2020 to 29" August 2020 in online mode. Dr. M. V. Narayana, Dr. S. Zahiruddin and
Smt. K. Divya Lakshmi acted as Course instructors. The main aim of the course is to learn python

€Lp/ksrmce.acin Follow Us: B3 @) u¥ /ksrmceofficial ’




Photo

- E—

<0 yrorika Groca cranena ® = snana

G

® «wwauroor @ o7u cocanas reooy @ 42 Praswa reoov

"

s &
S~ Y :

B o nrocaA

Dr. S. Zahiruddin
Smt. K. Divya Lakshmi VSS Murthy
4. Enupobil e
Coordinators Bringipabai i
K.8.R.M. COLLEGE OF ENGINEERIMN.
KADAPA - 516 003. (A.P)

@b /ksrmee.ac.in Follow Us: B3 @) ¥ /ksrmceofficial -




o

5

K.S.R.M. COLLEGE OF ENGINEERING

UGC - Autonomous
Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
Kadapa, Andhra Pradesh, India— 516 003

Certiﬁcate Course on
“10T with Python Programming ”

16/08/2020 TO-29/08/20220

Organized by

DEPARTMENT OF
ELECTRONICS AND COMMUNICATION ENGINEERING

P




J . .

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Electronics & Communication Engineering

Certificate Course on IOT with Python Programming

Attendance Sheet
S.No Roll No. Name of the Student vl [ i) T R TR e T v R e 6 S v T
ol o o o ol o () o o oy o o o ol
[—} (=] > [ (R ) =3 > [—] > (= =3 (= (= (=]
g (@ o ol o] el | et s e et el |3 e |
|z sdlE |2 B2 8= |8 |8 |2
clnegsigld BIX|A | RIS |E | B
1 199Y1A0401 | AKULA VENKATESH 7 M7 W E )l af Ll |l [k | |
2 199Y1A0402 | AMBATI MOULEESWARA REDDY |/ WO AN AT VAR A L
3 199Y1A0403 | ANGAJALA KAVYA SREE 7 i L1l M Ll | B st efen|
4 AYYALURI VENKATA PAVAN ot & | -y
SSVIAGADT |2 o e e \/l Wit v o | el ol v
5 199Y1A0408 | BALASAMUDRAM AJAY KUMAR o [ DI R | WF | ad ) LV | s |
6 199Y1A0409 | BANDI SAI BALAJI W | 2 [l e a | o g | A AN W
7 199Y1A0411 | BANDISEELA UDAYKUMAR W I W [T W o | ] st | (IR |
8 199Y1A0412 | BARIVENKULA SREENATH Mot nf Lk e S o | aff | | W I o P
9 BINGIMALLA VENKATA THARUN o 7 5 \/
199Y1A0413 | piviaR \,/\/( ‘/, £ \// J | \/ ./ x|V
10 199Y1A0414 | BOKKASAM SAI DEEPAK e |V L] LAEARITEARTAT AT s
11 199Y1A0415 | BOOSI VENKATA SAINATHREDDY | V| /|VIVIV IV IV A V]I VIV VIV
R AR SRR A ek

12

199Y1A0417

C JASHWANTH VARMA




13

199Y1A0418

CHAGANTI TEJESH KUMAR REDDY

N

14

199Y1A0419

CHALLA STEPHEN KUMAR

15

199Y1A0420

CHAVALI RAJESH

16

199Y1A0421

CHAVVA SAI SUSMITHA (W)

17

199Y1A0422

CHEEPATI VARAPRASAD REDDY

18

199Y1A0423

CHENNABOINA GURU DEEKSHITH

\

19

199Y 1A0424

CHEPPALI ANKAIAH

20

199Y1A0425

CHERUVU SAI PRAKASH REDDY

R R RS

21

199Y1A0427

CHINNAKOTLA SAI DHEERAIJ

i

199Y1A0428

CHINNAULA SANDEEP REDDY

23

199Y1A0430

CHINTAKUNTA VEERA SIVA

24

199Y1A0431

CHINTHALAPALLI MADHURIMA
(W)

29

199Y1A0432

DANDE MOUNIKA (W)

26

199Y1A0433

DERANGULA SAI KUMAR

27

199Y 1A0436

DEVARASETTY HARIPRIYA (W)

28

199Y 1A0437

DINNEPU VIKAS BHARADWAI
REDDY

29

199Y 1A 0440

GADDA UPENDRA

30

199Y 1A0441

GADDE ANUSHKA (W)

31

199Y1A0442

GAJJALA NAVYA TEJASREE (W)

a2

199Y 1A 0443

GAMPA SIVA KUMAR

33

199Y1A0444

GANDIKOTA SWARNALATHA (W)

34

199Y 1A 0446

GANGIREDDY SAI PRAVALLIKA (W)

£ o

199Y1A0448

GOLLA PRASANNA KUMAR

36

199Y 1A0449

GOPANA VISHNUVARDHAN NAIDU

37

199Y1A0450

GOTLA YESWANTH

38

199Y1A0451

GOURIPEDDI K S SREEDHANYA (W)

39

199Y1A0452

GULYAM SHARATH

40

199Y1A0456

JANGAMSETTY VINOD

41

199Y1A0459

KADAVAKUTI SOWMYA PRIYA (W)

KSR R KRR KRR RIS

42

199Y1A0460

KAKARLA SAGAR

SRR SRR RN NN R
SRR SR S R < RRRRER(SK S

<SSR ISR S SR SRR ISR

<SRRI S SRR SRR
SSRGS YY) NG SR SRR

RS NN G SR ARNSERINKKISE R

R R R RS (KRN Ry @
<] ISR g NSRRI R

SRS NS SRS SRR R R

~

S ISEDINSRR NS RERS KRS ERRRRRR

SRS R RR S| <0 NS SORRER <N\ Kk

ARSI RIS = RN SRS

RUGK SSRGS RISERR SN

4




43

199Y1A0461

KAKE SAIBHARATH

e

44

199Y 1A0463

KALUVALA SREEVIDYA (W)

N

M~

45

199Y 1A0464

KAMBAM MANOJ KUMAR

46

199Y1A0468

KAYAM VINAY

r 4"":
™

47

199Y 1A0471

KOMPALA SAI CHARAN

48

199Y1A0473

KONDAMUGARI EESHITHA
RACHANA RAVINDRA (W)

49

199Y1A0479

KUNDHARAPU VENKATESH

NESNNNENER

NN RN

R 2K

50

199Y 1A0483

KURUVA LAKSHMANNA

51

199Y 1A0484

KURUVA SAI PRAKASH

I=—

52

199Y1A0485

KUTEDDULA JASWANTH REDDY

K

53

199Y 1A0487

M SAI VARDHAN NAIDU

54

199Y1AO04E3

SHAIK MOHAMMED GHOUSE

39

199Y 1 AO4E4

SHAIK MOHAMMED YASEEN

56

199Y1A04E5

SHAIK MUNAZZAH FATIMA (W)

SNSESSINNEANSSISN

57

199Y1A04E6

SHAIK MUSAB AHAMED

L
I~

58

199Y1A04E7

SHAIK RUMMESA KOUSAR (W)

N

59

199Y 1 AO4ES

SHAIK SADAK ALI

60

199Y1A04E9

SHAIK YUNOOSH HUSSAIN

61

199Y 1A04F0

SIDDAVATAM SUDHARSHAN

62

199Y | AO4F1

SIKILIGIRI SAMEER AHAMMAD

QIR SRR < RS

<IN

63

199Y1A04F3

UYL NN Y (YRR
< K LGUNN N SRER (&I

SREERAMADASU VENKATA NAGA
SAI

RN SRR KR ERKR

SONRERRESSSNSEB KR

SNSRI S SRR
\KS\R&&KQ\\&x\<Kg&Q<5§

ISR SEEERNSEDE NS SRS

N TN R R SRR

SIS SR ARE RS REE

NNEUGGSHI NN <SQQQ<
4

SS9 AQEESY Y SRRS]

< KN OSSN IS

ES;%W[&ML.

HOD
Professor & H.0.D.
Department of E.C.E.

K.8.R.M. Colteye of Enginsering
ADAF A -516 0C3.

\J . SS Mm ;\,’/"
Principal
PRINCIPAL
KS.RM. COLLEGE OF ENGINEERING
KADAPA - 516 003. (A.P)



»

,’2/paper5 pdf

CEUR-WS.org/Vol-

Programming Intelligent IoT Systems with a
Python-based Declarative Tool*

Fabio D’Urso, Carmelo Fabio Longo and Corrado Santoro

Dipartimento di Matematica e Informatica - University of Catania
Viale Andrea Doria, 6 - 95125 - Catania (ITALY)
{durso,santoro}@dmi.unict.it, fabio.longo@unict.it

Abstract. IoT applications are traditionally characterised by a set of
interacting small devices equipped with microcontrollers (MCUs). Ba-
sically, they are often programmed in bare-metal using the C or C++
language; however, IoT applications are becoming more sophisticated
thus including forms of autonomous behaviours that, in some cases, have
the objective of presenting a certain degree of intelligence or reason-
ing; but since reasoners are traditionally designed using logic/declara-
tive approaches, their implementation into embedded devices that use
C/C++ as the main development language is no simple at all. Neverthe-
less, there are a fair number of porting of high-level languages to MCU
platforms that could help to overcome the cited difficulties; and among
them, MicroPython is one of the most interesting: it is a fully-featured
Python environment running on a wide range of MCUs, also providing a
small memory footprint and good performances. On this basis, this paper
presents a Python framework called PHIDIAS that allows the develop-
ment of logic/declarative code seamless running into a Python program.
PHIDIAS is able to give Python programs the ability of performing logic-
based reasoning (in the Prolog style), also letting developers to write
reactive procedures, i.e. pieces of program that can promptly respond to
environment events, which represent a typical case in IoT applications.
PHIDIAS also includes a library for the interfacing of I/O peripherals
of a microcontroller. The paper presents the PHIDIAS framework, high-
lighting features and advantages, and also provides a case-study in order
to assess the effectiveness of the proposed solution.

Keywords: [oT - Multi-agent systems - MicroPython - Logic/declara-
tive programming

1 Introduction

In the last few years, the development of the Internet-of-Things has led to the
introduction, in the market, of a wide number of small devices featuring very
different. functionalities but able to interact to each other, and to other kind of

* Copyright (© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)



2 Fabio D'Urso, Carmelo Fabio Longo and Corrado Santoro

systems, with the objective of helping us in day-to-day activities [12]. As just
some examples, many car models are “smart”: they are still tightly integrated
with our mobile phones, and it is expected, in the near future, that they will
be able to interact with other cars thus improving driver comfort and safety,
or reducing travel times, fuel consumption, etc. In a similar way, our homes
are becoming full of smart objects, starting from smart switches, smart lamps,
surveillance cameras, up to vocal assistants, such as Amazon Alexa or Google
Home, that allow occupants to control the whole home by means of voice com-
mands.

Such devices are usually equipped with microcontroller units (MCUs), and
include, apart from proper sensors and/or actuators, which are relevant to the
specific features of the device itself, a connectivity module i.e. a Wi-Fi or Blue-
tooth chip for the interaction with other devices. From the software development
point of view, these devices are in general programmed using the C or C++ lan-
guage, with a development environment that often includes some libraries pro-
viding an abstraction layer for MCU peripherals; the developed firmware runs
on bare-metal and only in very few cases an operating system (which is usually
a small real-time executive) is included.

The current generation of such IoT devices are limited in functionalities, that
is, smart sockets or smart switches have usually the capability of receiving or
transmitting the on/off command, and sometimes include also measuring sensor
acquiring data such as current or power, which may be useful to monitor energy
consumption. But it is expected that, in the very near future, such devices will
have the ability to exhibit a certain form of “intelligence” thus performing, in
autonomy, tasks that could derive from a reasoning process. As an example,
a smart lamp could learn home occupants habits and adapt off/on times or
light intensity from what people are used to do; or a heating/cooling system
could save a considerable energy by adapting its behaviour using data coming
from proximity sensors, in order to turn on/off at the proper time, making the
environment warm or cool, on the basis of human presence in the house.

Including intelligence in a smart device implies to add, to the firmware, a
proper support for the Al techniques needed in the specific project, which could
range from first-order logic inference, to more complex reasoning, up to machine
learning-based approaches. In particular, when a form of reasoning is required,
state-of-the-art techniques consider the use of logic/declarative frameworks or
languages which, in turn, are traditionally based on Prolog or Prolog-like envi-
ronments; the bad news is that such runtimes are usually not able to execute
on devices like MCUs that feature a limited computational power and available
memory.

However, we must remind that, in the field of high-level programming lan-
guages/platforms for MCUs, the MicroPython project has gained a very high
interest, since it provides a Python VM running over a wide range of MCUs,
featuring very interesting run-time performances and a limited size memory foot-
print. With these aspects in mind, the authors investigated about the possibility
of porting a Python-based logic/declarative frammework to MicroPython, thus al-




Programming Intelligent IoT Systems with a Python-based Declarative Tool 3

lowing developers to include reasoners in IoT devices, making them “more intel-
ligent”. The developed tool, called PHIDIAS, is able to support logic-based /BDI
multi-agent systems in Python. PHDIAS is the evolution of PROFETA [11] and
has the aim of providing, in a single framework, a knowledge system, a proce-
dural system and a reactive system: altogether can be used to write rational
agents that can not only react to events but also plan actions in order to proac-
tively reach their goals. This paper describes the tool, reporting the syntax of
the declarative language highlighting, in particular, the components that are
specifically written for the MCU and that provide access to I/O peripherals and
wireless communication modules. A case-study is also included, in order to let
the reader understand the capabilities of PHIDIAS and its advantages in the
context of intelligent IoT. :

The paper is structured as follows. Section 2 deals with related work. Sec-
tion 3 presents an overview of PHIDIAS. Section 4 describes the components
provided by PHIIAS for a MCU scenario. Section 5 describes a case-study of a
domotic application. Section 6 concludes the paper.

2 Related Work

The research on IoT intelligent systems reports a wide number papers, dealing
with different scenarios and solutions.

The author of [16] provides a global conceptual overview of the synergy of Al
and JIoT with emphasis on its application in robotics and automation; the paper
also outlines a number of case studies (home automation, oil-field production,
smart robotics, smart manufacturing, and smart factory).

In [13] the authors present an architecture based on a distributed edge/cloud
paradigm, which aims to let drones recognize objects during their flight, in order
to balance benefits and cost of processing data at the edge, versus a central
location. The reasoning models are trained in the cloud, then deployed as Docker
containers and loaded into a shared repository, from which can be accessed by
the edge components.

In [15], the authors deal with classrooms under-utilization in a real university
campus, by instrumenting classrooms with IoT sensors to measure real-time us-
age, using regression learning algorithms to predict attendance, and performing
optimal allocation of rooms to courses so as to minimize space wastage.

The authors of [17] propose an approach to decompose a complex Al applica-
tion into simplified distributed modules connected by using the IoT technology.
The framework, called Altalk, allows a developer to easily add, to existing IoT
applications, Al mechanisms such as regression models, automatic data collec-
tion, real-time prediction, model training, etc.

In the context of run-time executive or programming languages for MCU
devices, there are indeed few solutions. In general, since MCUs are programmed
in C, any C-based run-time is theoretically able to execute onto such platforms,
unless the memory footprint of the resulting code and the amount of RAM re-
quired is too much for the target device. As for C-based platforms, CLIPS [1] is




4 Fabio D'Urso, Carmelo Fabio Longo and Corrado Santoro

a run-time that supports writing and execution of ruled-based production sys-
tems by means of a LISP-like programming language and a data model based on
“facts”; however, CLIPS, to run onto a MCU, must be properly ported by patch-
ing some system-dependent parts (like those relevant to mass storage) and, while
this work seems feasible, at the present the authors do not have a knowledge of
such a porting project. In the context of symbolic languages (also with function-
al/declarative philosophy), there are several implementations of LISP/Scheme:;
as just an example, uLISP [4] is porting of the language for many MCU-based
boards, like Arduino, ESP8266, STM32, etc.; it is interesting since it has a small
memory footprint and, since it is a standard LISP implementation, could serve
as run-time environment for a symbolic reasoner or production system. As for
imperative and object-oriented approaches, it’s worth of notice the solution pro-
vided for the Java world which consists in the JavaME [3], a JVM profile, with a
suitable class library, specifically designed to fit small/embedded environment;
the solution is interesting, but (as reported on the web page) it is able to run
only in high-end MCU devices (e.g. Cortex-M7, ARM11). Some hardware plat-
forms, like the NodeMCU board [5], offer a Lua-based environment; while the
solution is interesting, it suffers of the problem of a low spreading of Lua which,
at the present, cannot be considered a mainstream language. A solution to run
JavaScript on MCUs is provided by the Espruino project; it is a commercial
project by a company which produces and sells STM32-based hardware plat-
forms, also providing an open-source development environment that includes a
JavaScript interpreter running on several MCUs [2]; the interpreter is able to
run also on low-end devices and it will be one of the solutions that we will anal-
yse in our future work. The Python-based solution is the one considered in this
paper; the choice of this language relies on three main factors; first, the increas-
ing popularity of the language itself, which is ranked first in 2019 [7]; second,
the availability of our Python-based BDI system PROFETA [11]; and third the
availability of MicroPython as an effective Python run-time for the majority of
MCU-based solutions.

3 Overview of the PHIDIAS Platform

PHIDIAS [6] is a multi-agent platform that let developers write multi-agent sys-
tems using the Python language and the BDI paradigm. PHIDIAS! is the evo-
lution of PROFETA [11, 8] and is a knowledge-based system supporting Prolog-
like inference and allowing the implementation of agent behaviour by means of
reactive and proactive rules. Like PROFETA, PHIDIAS provides a declarative
language that offers logic/declarative constructs that can be mixed inside Python
code; this is made possible by exploiting the object-oriented features of Python,
in particular operator overloading. With respect to PROFETA, PHIDIAS adds
the possibility of expressing Prolog-like goals, the support for multi-agent envi-
ronments, the interaction among agents via messages (also belonging to different

! PHIDIAS is the acronym of PytHon Interactive Declarative Intelligent Agent System




Programming Intelligent IoT Systems with a Python-based Declarative Tool 5

machines), the possibility of tying procedures to events (to combine proactiv-
ity and reactivity), and some modifications to the declarative language syntax
in order to make it simpler and more flexible. We report here an overview of
PHIDIAS; readers interested in more details can refer to [6,11,10,9].

3.1 Basics of PHIDIAS

Like any knowledge-based system, a PHIDIAS program is made of a data part,
which is represented by several belicfs, properly defined by the developer ac-
cording to application requirements, and a computational part made of a set
of rules. The data part may also include Prolog predicates that, applied to the
beliefs asserted in the knowledge base, can be used to derive new knowledge.

As for computational part, the rules that constitute the agent program can
be of three types:

— reactive rules, they are executed as triggered by the occurrence of certain
events, such as asserting a belief into or retracting a belief from the knowledge
base;

— procedural rules, they are executed when specifically invoked, as in clas-
sical procedural system;

— event procedures, they combine both the types above, i.e. they are pro-
cedures that can invoked but wait for the occurrence of specified events in
order to proceed with the execution of the relevant body.

Each rule has a head, that can be either (i) the specification of an event
occurring when a belief is asserted or retracted, or (ii) the specification of a
procedure that can be properly invoked. Optionally, a rule can have a context
condition part (which is syntactically indicated by the symbol “/”, i.e. subject
to) specifying a predicate that must be true in order to execute the triggered rule
itself; the predicate is a condition on values of parameters and/or the presence
of one or more given beliefs in the knowledge base. The last part of a rule,
which is syntactically specified with the “>>” symbol, is the list of actions that
expresses the computation to be executed following the activation of the rule; an
action may be the asserting/retracting a belief, invoking a PHIDIAS procedure,
or invoking a user-defined action that is instead implemented in pure Python.

In order to let the reader understand how PHIDIAS works, we describe, in
the following, two toy examples with the objective of providing the reader with
the basics of PHIDIAS syntax and semantics.

The first example, the listing of which is reported in Figure 1, is a simple
knowledge-based application: here, we are representing a world in which there
are “students” that, sooner or later, become “graduated”; the rules of the pro-
gram have the objective of keeping the knowledge consistent. As the figure shows,
the first part of a PHIDIAS program is devoted to concepts and symbol decla-
ration, i.e. beliefs, which are declared as subclasses of Belief (lines 5-6), and
variables used in rules that must be declared using the statement def_vars (line
7). Referring to the example, the student state, for a person X, is represented by




00~ U WA

11
12
13
14
15
16
17

6 Fabio D'Urso, Carmelo Fabio Longo and Corrado Santoro

-

- 7

from phidias.Types import =
from phidias.Lib import =
from phidias.Main import =

class student(Belief): pass
class graduated(Belief): pass
def_vars ("X")

+graduated (X) / student(X) >> \
[ show_line(X, "™ is now graduated!"), -student(X) ]
+graduated (X) >> \
[ show_line(X, " is not a student"), -graduated(X) ]
+student (X) / graduated(X) >> \
[ show_line(X, " is graduated and cannot be a student agaimn"),
-student (X) ]

PHIDIAS.run ()

Fig.1. An Example of a Reactive PHIDIAS Program

the presence of the belief student (X) in the knowledge base; in a similar way,
the action of becoming graduated is represented by the assertion of the belief
graduated(X), but this is possible only if X is a “student”: if this is the case,
belief student (X) must be retracted. This is represented by three reactive rules
reported in Figure 1, respectively in lines 9-10, lines 11-12, and lines 13-15. The
first rule states that, as soon as the belief graduated (X) (with X any) is asserted
(the “4+” symbol means that something has been added to the knowledge base),
if the belief student (X) (with that X) is already present in the knowledge base,
then the following actions are executed: first something is shown on the console
and then belief student (X) is removed (since X is no longer a student). The
second rule has the same triggering event of the first rule but it is evaluated
only if the prevision rule does not match (i.e. the belief student (X) is not in the
knowledge base) and the result is an error message and the immediate removal of
belief graduated(X): indeed the sense is that it cannot exist a “graduated” that
has not been previously a “student”. The third rule is instead used to state that,
once a student has been graduated, s/he cannot become once again a student;
to this aim, the rule is triggered by the assertion of belief student(X) and, if
the knowledge base already contains the belief graduated(X), an error message
is printed and the former belief is deleted.

The second example is given in Figure 2 which reports the listing of a
PHIDIAS program that uses procedures. Here we are supposing that this pro-
gram is controlling a robot having the task of repetitively finding and grabbing
balls that are present in the environment. We are using the belief BallPos (X,Y)
to keep track of the position of (known) balls; the procedure CatchBall(), in
lines 12-13, has, as contextual condition, the presence of (any) belief BallPos (X, Y)
in the knowledge base; if this is true (variables X and ¥ will be bound to the
relevant values), the robot is driven towards ball’s position (action GoTo (X,Y)),
then the ball is picked (action GrabBall()) and the belief is removed from the
knowledge base since that ball is no more present in the environment; finally,




WOoo~1; U W=

Programming Intelligent IoT Systems with a Python-based Declarative Tool 7

PHIDIAS.run(main=CatchBall())
\

-
from phidias.Types import *

from phidias.Lib import =*
from phidias.Main import =*

class BallPos(Belief): pass
class CatchBall (Procedure): pass
class FindBall (Procedure): pass
class Goto(Actiom): ...

class GrabBall (Action): ...
def_vars("X","Y")

CatchBall() / BallPos(X,Y) >> [ GoTo(X,Y), GrabBall(),
-BallPos(X,Y), CatchBall() ]
CatchBall() >> [ FindBall(), CatchBall() ]
FindBall() >> # ... activale computer vision system to find for the ball

Fig. 2. An Example of a Procedural PHIDIAS Program

the procedure CatchBall() is called recursively in order to let the robot pick
the next ball. On the other hand, when the CatchBall() is called and no ball
position is known (i.e. no belief BallPos (X,Y) is present, line 14), the procedure
FindBall() is first involved and then CatchBall() is recursively called; here the
FindBall() (which is not detailed in the listing) has the objective of activating
a computer vision system which should search for the ball and then assert the
relevant BallPos(X,Y) belief in the knowledge base.

Apart from the functionality explained, the listing shows some important syn-
tactical elements of PHIDIAS: beliefs, procedures and variable must be declared
(lines 5-10), as it has been shown also in the first example, while Actions are
basic elements that represents atomic computations that a PHIDIAS program
can execute; in particular, they contains pure Python code (which is not shown
in the figure) and constitute one of the pieces of the bridge that connects the
PHIDIAS world with the Python world. Indeed, the way in which a PHIDIAS
program interacts with the external world is supported by means of the two
basic abstractions: Beliefs and Actions, which are described in the following.

Beliefs represent input data and thus are generated by (Python) computa-
tions that, by means of interaction with suitable software drivers, are able to
gather/poll data; beliefs, in turn, can be used to within PHIDIAS rules, as trig-
gers or simply data knowledge for procedures. In order to support data polling,
and consequent belief generation, PHIDIAS provides a further abstraction rep-
resented by the Sensor class: any piece of user software in charge of generating
beliefs can be encapsulated in a Sensor sub-class, in particular in its sense ()
method; this code is executed by the PHIDIAS runtime in parallel to other ac-
tivities?, and thus can feature blocking calls and/or periodicity. In a similar way,
any kind of output activity of a PHIDIAS program must be encapsulated into
a user-defined Action (sub-)class and, in detail, in its execute () method that

2 each sensor has its own thread of execution




-
DWW ~D U W

[
W

L= N R

8 Fabio D’Urso, Carmelo Fabio Longo and Corrado Santoro

can also receive the proper parameters from the call performed within the body
of a PHIDIAS rule.

from phidias.Types import =
from phidias.Lib import =
from phidias.Main import =

class a_belief(Belief): pass
class go(Procedure): pass

class Sender (Agent):
def main(self):
go() >> [ +a_belief ()[{"to":"Receiver@dest -machine.mydomain"}] ]

Sender () .start ()

PHIDIAS.run_net (globals (), ’http’)
\ J

-
from phidias.Types import =
from phidias.Lib import =
from phidias.Main import =

class a_belief (Belief): pass
def_vars("X")

class Receiver (Agent):
def main(self):
+a_belief () [{"from":X}] >> [ show_line("Received a belief from e Q1]

Receiver().start()
PHIDIAS.run_net (globals(), ’http’)

\

Fig. 3. Example of Two Communicating Agents in PHIDIAS

3.2 Multi-agent Systems in PHIDIAS

One key aspect that distinguishes PHIDIAS from its predecessor, PROFETA,
is the support for multi-agent systems. In PHIDIAS, a developer can define
several agents, each one with its own set of rules, that are able to interact to
each other; agents can coexist within a single PHIDIAS runtime environment,
running concurrently, or execute in different environment/computer and thus
interact by means of a communication network.

Interaction among agents is performed by means of a message-passing mech-
anism that allows a sender agent to assert a belief in the knowledge base of
another agent; using this mechanism, the belief is transferred to the destination
agent that, in turn, can react by using a PHIDIAS rule triggered by the assertion
of that belief.

From the syntactical point of view, as Figure 3 shows, sending a message
implies to use the belief assertion statement which is annotated with a “to” tag
that specifies the agent destination of the belief itself (see line 10 of Figure 3);
addressing is performed using a classical naming scheme such as “localname @




Programming Intelligent IoT Systems with a Python-based Declarative Tool 9

machine-name-or-ip”. In a similar way (see the bottom side of Figure 3 and in
particular line 10), by annotating a belief assertion trigger event with the “from”
tag, the name/address of the sender agent (if any) can be retrieved and used
properly.

As for the underlying messaging mechanism, as the listings suggest (see line
13 of both listings in Figure 3), message transfer is performed by using HTTP:
each PHIDIAS environment runs a HTTP server that receives beliefs properly
encoded, identifies the destination agent and, if it exists, put the data into the
relevant knowledge base, activating rules if any.

4 PHIDIAS for MCU Environments

In the world of IoT and Smart Objects, a key aspect is the way in which data are
received from and sent to the environment; this may include also data gathering
from sensors (e.g. presence sensor) or actuator driving (e.g. driving a lamp), or
commands/data related to the interaction with other devices. From the soft-
ware point of view, such an interface has the task of providing an access to the
I/O peripherals of the MCU, such as GPIO, timers, communication interfaces,
etc., allowing a developer to use the proper abstraction which are related to the
language/platform used to implement the application. To this aim, MicroPy-
thon includes some modules that provide a suitable software interface to MCU
peripherals, in particular:

— General-Purpose Digital I/0 lines;

— PWM generation;

— Analog-to-Digital Converters;

— UARTS to support serial communication;

— Serial-Peripheral-Interface (SPI) and I2C Bus.

It’s up to the developer to use such modules to integrate a specific sensor that
could use e.g. ADC or I2C interface, or one or more actuators attached to e.g. a
PWM line or UART or another conmunication interface. This is the task of
the porting of PHIDIAS for MicroPython: it includes a Python package, called
phidiasmcu, that provides a set of services able to the perform a bridge between
the PHIDIAS world and the Python/MCU world. In the current implementation,
the services offered are GPIO, ADC and communication via TCP/IP over WiFi.

GPIO services can be used to write an output line, to read an input line or
to activate a notification when an edge is detected on an input line. To this aim,
the API provided in PHIDIAS includes the following types:

— DutPut(pin,value), it is a PHIDIAS action able to set the given line to a
certain value (0 or 1);

— InPin(pin,variable), it is a special PHIDIAS belief? that binds the vari-
able to the actual value of the given pin;

3 it is called ActiveBelief.




10 Fabio D’Urso, Carmelo Fabio Longo and Corrado Santoro

— HandleInputPin(pin,edge), it is an action able to activate a trigger on the
given pin according to the occurrence of a specified edge (either rising or
falling); when the edge is detected the special belief* PinEvent (pin,value)
is automatically generated, which can thus be used to trigger a PHIDIAS
rule.

ADC services allow PHIDIAS programs to configure the analog-to-digital
converter peripheral of the MCU, start conversions and retrieve obtained values.
Two PHIDIAS types are available for this:

— ADCSetup(pin), it is an action that can be used to configure the given pin
as ADC input;

— ADCRead (pin,variable), it is a special construct that (according to the
way in which it is used) can act as a belief or an action; if it appears in the
context condition of a rule, it acts as an (active) belief; if it is present in the
body of a rule, it acts as an action; in both cases, the objective is to bind
the variable to the ADC values sampled from the pin.

As for communication services, there are several aspects that must be taken
into account when a PHIDIAS program runs onto a MCU. Basically, MCU sys-
tems do not possess the same networking /interconnection capabilities of a clas-
sical computer system; indeed, communication mechanisms of MCUs are quite
limited in characteristics and range, and include systems typical of the IoT world,
like Bluetooth Low Energy, 6LowPan, ZigBee, etc. In some cases, it is possible
to use small Wi-Fi modules that, while implementing the whole TCP/IP stack,
present some limitations, like the ability to act only as client or the possibility
of opening only one connection.

PHIDIAS

-

PHIDIAS
Environment

BLE-T -

PHIDIAS
Mcu

%

HTTP

PHIDIAS Environment
M, cPnP ;
Socket R S R /

PHIDIAS
Environment

Fig. 4. Message Gateway

Yitisa Reactor, i.e. a special belief that can generate a rule triggering event but is
not added to the knowledge base.




U= AR Nes T R VR L

Programming Intelligent IoT Systems with a Python-based Declarative Tool 11

Given this, in porting PHIDIAS to a MCU environment, we had to rethink
the communication aspects since the HTTP-based interaction, “as-is”, cannot
be supported. But, at the same time, any other mechanism must not affect the
syntax and the semantics of communication—{rom the language point of view—
neither the naming scheme used for agent addressing. To this aim, we designed an
architecture for the communication system for PHIDIAS in IoT environments,
depicted in Figure 4, which is based on the presence of one or more Message
Gateways, i.e. machines able to run a service that, on one side, exposes the
HTTP protocol, behaving as a “classical” PHIDIAS environment and, on the
other side, presents a connection endpoint that uses a specific protocol for the loT
environment. While the HTTP side is always the same for any kind of gateway,
the other side depends on the protocol employed which, in turn, is tied to the
hardware modules available on the IoT devices. In our current implementation,
as it will be described in the case-study, we designed a Socket-based Messaging
Gateway which is intended to be used with those Wi-Fi modules, often employed
in MCU environments®, that are limited to open only one TCP socket. In this
case, a node running PHIDIAS connects to that gateway and handles message
sending /reception through that single socket: it’s up to the gateway to interpret
specified recipients and deliver the message to the right node/agent addressed.

PHIDIAS.run_net (globals(), ’gateway’, sock)

>
from phidias.Types import =*

from phidias.Lib import =

from phidias.Main import =

from phdiasmcu.gpio import =

from phdiasmcu.idw0Olml import IDWO1M1

class presence (Reactor): pass
class setup(Procedure): pass

class PresenceSensor (Agent):
def main(self):
setup() >> [ HandleInputPin("A1", "falling") ]
+PinEvent ("A1",0) >> [ +presence()[{"to":"lighter@livingroom-bulb"}] 1]

sock = IDWO1M1() # Wifi module driver

sock.open(baud=57600) # Connect to the WiFi network
sock.wait_wifi_up()

sock.connect ('gatevay.address’, 9999) # Connect to the Message Gateway
sock.send(b’livingroom-sensor-1\n’) # announce node name

PresenceSensor ().start (setup())

Fig. 5. The PHIDIAS Code of the Presence Sensor

5 In particular, we are talking about the SPWF01SA Wi-Fi module [14].




12 Fabio D’Urso, Carmelo Fabio Longo and Corrado Santoro

5 Case-Study

In this Section we report a case-study which shows how to leverage PHIDIAS
for the implementation of automated actions involving IoT devices in a domotic
environment; it is a simple (but working) example, which however shows all the
features of PHIDIAS in MCU/IoT environments. We focused on a system of
smart light bulbs, grouped in rooms, where each rooms is equipped with one
or more proximity sensor; the idea is to keep the lights on, according to human
presence in a room, only for the needed time useful for home’s inhabitants, in the
view of energy saving. We consider that each sensor and bulbs are small MCU
devices, equipped with a Wi-Fi module, some digital 1/Os and running, of course,
MicroPython and PHIDIAS; here, sensors send, via PHIDIAS messaging, on/off
commands to the bulbs which, in turn, implement a proper timer to switch off
the light when no more people are in the room.

-
1|f from phidias.Types import =

2 || from phidias.Lib import =

3 || from phidias.Main import +

4 || from phdiasmcu.gpio import *

5 || from phdiasmcu.idw0lml import IDWO1M1

6

7 || class presence (Reactor): pass

8 || class my_timer(Timer): pass

9

10 || class lighter(Agent):

11 def main(self):

12 +presence() >> [ OutPin("BO", 1), my_timer (60000).start ]
13 +timeout ("my_timer") >> [ OutPut("BO", 0) ]

14

15 || sock = IDWO1M1{() # Wi-fi module driver

16 || sock.open(baud=57600) # Comnect to the Wi-Fi network

17 || sock.wait_wifi_up ()

18 || sock.connect (’gateway.address’, 9999) # Connect to the Message Gateway
19 || sock.send(b’livingroom-bulb\n’) # announce node name

20

21 |[ 1igher () .start ()

22 || PHIDIAS . run_net (globals(), ’gateway’, sock)

&

Fig. 6. The PHIDIAS Code of the Smart Bulb

Figure 5 shows the code running in each sensor of the room. Here we are
considering that the hardware device that detects people presence has a digital
interface and is connected to the input pin called “A1” of the MCU: the line is
normally set to logic “1” and each time a movement is detected in the room,
it goes to “0” keeping that state until a rest of at least 3 seconds is identified.
On this basis, we have an agent called PresenceSensor that detects the edge
generated by the sensor and sends a proper message to the bulb; in particular,
the setup() procedure (line 12) activates a trigger on that line when a falling
edge is detected: if this is the case, the PinEvent () belief is asserted and the
rule in line 13 is triggered thus provoking a message sending to the smart bulb;




Programming Intelligent IoT Systems with a Python-based Declarative Tool 13

here, the destination agent specified is 1igher@livingroom-bulb, i.e. the agent
named “ligher” running the node named “livingroom-bulb”. Lines 15-19 report
the code needed to perform connection to the messaging gateway: here first the
driver of the Wi-Fi modules is created which waits for the network, then performs
connection to the gateway and announces its node name (“livingroom-sensor-1").
Lines 21 and 22 start the agent and the PHIDIAS runtime.

On the other side, the smart bulb runs the PHIDIAS code reported in Fig-
ure 6. Here we are supposing that the lamp is connected to the digital output line
named “B0”; apart from the libraries used to drive digital outputs, this example
uses timers which are natively provided by the PHIDIAS library. The startup
code (lines 15-22) is the same to that of the sensor while the agent, named
“ligther”, has only two reactive rules: the former, line 12, is executed when the
presence () belief is asserted: it is indeed activated to the message sent by the
presence sensor; the body of the rule turns on the lamp through action OutPin()
and starts a timer for 60 seconds; if the timer elapses the timeout () belief is
generated and rule in line 13 is triggered, thus turning off the lamp; but if an-
other presence() belief is received, due to activation of the presence sensor, the
timer is restarted.

6 Conclusions

This paper described the MicroPython implementation of PHIDIAS, a BDI sys-
tem that lets a developer write logic-based intelligent multi-agent system. The
use of MicroPython allows the tool to run onto MCU-based hardware platform
thus making it ready for the Internet-of-Things world. The implementation in-
cludes a set of libraries that provide suitable software abstractions for the various
peripherals that usually are present in a MCU, as well as a messaging middle-
ware to let agents interoperate transparently and independently of the running
platform, i.e. MCU system or classical CPU system. A case-study has shown the
basic capabilities of PHIDIAS that are provided for a MCU/IoT environment.
Our future work aims at writing more intelligent IoT application, in order to
assess the characteristics of the tool for the specific context, and write additional
libraries and drivers for other peripherals and/or sensors and actuators.

References

1. Clanguage integrated production system (2017), http://clipsrules.sourceforge.net/

. Espruino javascript interpreter source code (2019),
https://github.com /espruino/Espruino

. Java micro edition (2019), https://www.oracle.com/java/technologies/javameoverview.html

. Lisp for microcontrollers (2019). http://www.ulisp.com/

. Nodemcu (2019), https://www.nodemcu.com/index.en.html

Phidias web page (2019), https://github.com/corradosantoro/phidias

. Popularity of programming language (2019), http://pypl.github.io/PYPL.html

. Profeta web page (2019), https://github.com/corradosantoro/profeta

-]

[ RS NN




14

10.

11.

12.

13.

14.

15.

16.

17.

Fabio D'Urso, Carmelo Fabio Longo and Corrado Santoro

. Fichera, L., Marletta, D., Nicosia, V., Santoro, C.: A methodology to extend im-

perative languages with agentspeak declarative constructs. In: Proceedings of the
11th WOA 2010 Workshop, Dagli Oggetti Agli Agenti, Rimini, Italy, September
5-7 (2010)

Fichera, L., Marletta, D., Nicosia, V., Santoro, C.: Flexible robot strategy de-
sign using belief-desire-intention model. In: Research and Education in Robotics-
EUROBOT 2010, pp. 57-71. Springer (2011)

Fichera, L., Messina, F., Pappalardo, G., Santoro, C.: A Python Framework
for Programming Autonomous Robots Using a Declarative Approach. Sci. Com-
put. Program. 139, 36-55 (2017). https://doi.org/10.1016/j.scico.2017.01.003,
https://doi.org/10.1016/].scico.2017.01.003

Savaglio, C., Ganzha, M., Paprzycki, M., Bdic, C., Ivanovi, M., Fortino, G.: Agent-
based internet of things: State-of-the-art and research challenges. Future Genera-
tion Computer Systems pp. 1038-1053 (2020)

Seraphin B. Calo, Maroun Touna, D.C.V.A.C.: Edge Computing Architecture for
applying Al to IoT. In: IEEE International Conference on Big Data (BIGDATA).
IEEE (2017)

STMicroelectronics: Command set reference guide for AT full stack” for
SPWF01Sx series of Wi-Fi modules. WWW (2018)

Thanchanok Sutjarittham, Hassan Habibi Gharakheili, S.S.K., Sivaraman, V.: Ex-
periences With IoT and Al in a Smart Campus for Optimizing Classroom Usage.
In: IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019.
IEEE (2019)

Tzafestas, S.G.: Synergy of IoT and Al in Modern Society: The Robotics and
Automation Case. Robot Autom Eng J. 2018; 3(5): 555621. (2018)

Yun-Wei Linl, Yi-Bing Linl, C.Y.L.: Altalk: a tutorial to implement Al as IoT
devices. IET Netw., 2019, Vol. 8 Iss. 3, pp. 195-202 (2019)




5
I

Cogtdinator Head Of Department -
S o0 :

e
s ) y
7 \ - - - %*@63:5&%

K.S.R.M. COLLEGE OF ENGINEERING
s hoans

Certificate of Completion
."fﬁiatbtaw'difgtﬁat N
MufMo. Rond: 7 Ralal;
Bearing the Rell No _LQQVI-KOQOC]

feas Succes fully cempleted certification counse gn
10T WOith pythnn DyDararmming

Fram |]0§]8 nag/ tagq&émjmo,@%'azd@%pwmmta#
' EYPCWUH?@ a0d Communirtinn E0g1vering

i
_.K@\um Q’CMC@Z,' [)

V.S.5. Mudly

Principal




K.S.R.M. COLLEGE OF ENGINEERING

UGC - AUTONOMOUS
KADAPA , AP - 516 005

Certificate of Completion
This is to certify that
Mef Ms. Dande. Mounik a
Bearing the Roll Ne ‘QQY!AOq&l—
ﬁaASucc&sﬁtﬂfgcanbpeetedC%ﬁﬁcaﬁanmmem
10T otk Puthnn  Dvimvamming

Fram lélD&faog)é te 9)oef g @0, ﬁmga{tmdﬂg@epwdmentaﬁ
Elechonic and Cormuns? '

2; K% : dl- tg ‘ < M N 8. = Py Cb
(0] inator
5 ! .

Head Of Department Principal s q:‘
- ? N
%Y.S-@ ~Mg(°§:<
6 N




UGC - AUTONOMOUS

KADAPA , AP - 516 005

Certificate of Completion

This is to centify that
M| Ms. Kok (a1 Rbavath

Bearing the Roll No 99y 140 6

LT

has Succeaﬂcﬂ’gcampffetedwtﬁﬁcaﬁancamean

LWOrh Du+thon DYDGvammiN 4

From 161059090 ta o?qlof.f&JO&Q,

Elechoricr and M

(%gatju'/zed by Department of

un'cahon '(:Q:J? N ee_r_mﬁ

. / g_/m) T e r\/\ud;"\{—

c Al E =

q Cogrdinator Head Of Department Principal
%}y—%

G




Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

Department of Electronics and Communication Engineering
Feedback Form

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)

Rate
the
value
Is the |of
lecturer |course
Isthe [Isthe |The contents Is the course |clear  [in
course |lecture |of the course exposed you [and increas
content met|sequenc |is explained |ls the level [to the new easy to |ing
Year & your ewell [with of course knowledge underst |your
S.No. |Email address Name of the student Semester Branch |Roll No. expectation |planned [examples high and practices |and skills [Any issues
90Y | AD: ksrmee.ac
199V1 AGI0)@hstmes Al | oy A VENKATESH B.Tech 199Y1A0401
n IlIsem ECE Yes Yes Agree Agree Strongly agree 4 5|Nothing
QUY | AD402¢ g e ac =g
199Y 1 AD402/eksrmee.ac.1 JAMBATI MOULEESWARA B.Tech 199Y1 A0402
n REDDY Illsem ECE Yes Yes Agree Agree Strongly agree 5 5|Nothing
99Y | AD403@ksmee.ac.
LODYIACAONGRSINCEE! | A\NGAJALA KAVYA SREE  |B.Tech 199Y 1A0403
4 [lsem ECE Yes Yes Agree Agree Strongly agree 4 5|Good
199Y1 A0407@ksrmee.ac.i JAYYALURI VENKA-TA B.Tech 199Y1A0407
u PAVAN KUMAR REDDY Illsem ECE Yes Yes Agree Agree Strongly agree 5 5[nothing
199Y1Ad08 @ksrmee ac n [PALASAMUDRAM AL AY 1B Tech 199Y1A0408
IlIsem ECE Yes Yes Agree Agree Strongly agree 5 5|Good
99Y | AD409w0ksrmee. ac
L9V IADADTEksImeeAC) oy o 6 AT BALAL B.Tech 199Y1A0409
n
§ [Tlsem ECE Yes Yes Agree Agree Strongly agree 4 5|very good
199Y 1AO4 1 1wksrmee.ac, |
BANDISEELA UDAYKUMAR |B.Tech 199Y1A0411 Strongly
L IlIsem ECE Yes Yes agree Agree Strongly agree 4 3{Nothing




99Y 1 A04 | 26@ksrmee ac i
L2 (RSMCECAC] | A RIVENKULA SREENATH B Tech 199Y1A0412
8" Ilsem ECE Yes Yes agree Agree Strongly agree 4Ino
199Y 1A041 3eksrmee.ac i |BINGIMALLA VENKATA B.Tech 199V 1A0413 Strongly
9n THARUN KUMAR Illsem ECE Yes Yes agree Agree Strongly agree 5|Nothing
AO4 LA ksrmee.ac.) B.Tech Strongly
i A e BOKKASAM SAI DEEPAK 199Y1A0414
10{n Fa Ilsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1 AO415a0kstmee.ac i [BOOSI VENKATA SAINATH B Tech 199Y1A0415
1o REDDY Ilsem ECE Yes Yes Agree Agree Strongly agree 4|Good
199Y 1AD4 17 e.ac 3
' HTgksrmeeae o A SHWANTH VARMA B.Tech 199Y1A0417
12" IlIsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1 AO4 1 8kss i |CHAGANTI TEJESH KUMAR | Tech [ovikciis
132 REDDY [llsem ECE Yes Yes agree Agree Strongly agree 5|Good
YUY | A4 19wk Se.4c.
L9V IAOT 9 @whstinee.¢ |\ opar | A STEPHEN KUMAR  [B.Tech 199Y1A0419
14|" [TIsem ECE Yes Yes agree Agree Strongly agree 4]very good
199Y 1 AO420/@ksrmee.ac i
199V AGI20URSMECACT |y A yALI RAJESH Pidesh 199Y1A0420
15)n [Ilsem ECE Yes Yes agree Agree Strongly agree 4)very good
199Y 1 AO42 1 ceksrmee.ac, i B.Tech
16]n R IIsem ECE L Latael Yes Yes agree Agree Strongly agree 4]very good
199Y 1 AD422%ksrmee ac.i [CHEEPATI VARAPRASAD B.Tech 1991 A0422
17|10 REDDY IlIsem ECE Yes Yes agree Agree Strongly agree 5no
199Y1A( -1 |CHENNABOINA GURU B.Tech 199Y1A0423
18" DEEKSHITH [lIsem ECE Yes Yes agree Agree Strongly agree 5|nithing
199Y1 AD424@ksrmee ac i
Y1 A2 srmeeaes | ppppaL] ANKAIAH B.Tech 199Y1A0424 Strongly
19" IIsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1 A0425@ ksrmee ac.i [CHERUVU SAT PRAKASH B.Tech 199Y1A0425 Strongly
20(" REDDY Illsem ECE Yes Yes agree Agree Strongly agree 4|Good
199Y1A0427ioksnmee.ac.| B.Tech Strongl
CHINNAKOTLA SAI DHEERAIJ |- 1€€ 199Y1A0427 ongly
21|82 IlIsem ECE Yes Yes agree Agree Strongly agree 3|Good
199Y | AD428 cksrmee,ac,) |CHINNAULA SANDEEP B.Tech 199Y1A0428
22| REDDY [llsem ECE Yes Yes agree Agree Strongly agree 4|Good
199Y 1 A04 30/ ksrmec.ac
1991 ADLI0MURSIMECAC] | yNTAKUNTA VEERA SIVA |B.Tech 199Y1A0430
23" Illsem ECE Yes Yes agree Agree Strongly agree 4|Good




199Y | A043 1 ksrmee.ac.) [CHINTHALAPALLI B.Tech 199Y1A043 1 Strongly
24|n MADHURIMA (W) Ilsem ECE Yes Yes agree Agree Strongly agree 4|Good
199Y 1 AO4320ksrmee.ac,
YIAOHIZCRSINCCIC 1y A NDE MOUNIKA (W) B.Tech 199Y1A0432
25|10 IlIsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y1AD433ksrmee ac |
: . DERANGULA SAI KUMAR  |B.Tech 199Y1A0433
26| Illsem ECE Yes Yes agree Agree Strongly agree 5|Nothing
199Y | A04 36 kstmee.ac.) IDEVARASETTY HARIPRIYA B Tech 1991 AO436
27/" ) [1lsem ECE Yes Yes agree Agree Strongly agree 5|no
199Y 1 AQ437ksrmee ac.i |DINNEPU VIKAS
| 99Y 1 AQ4 ST kstmee ac.| 0437
n BHARADWAJ REDDY B Tish 122X
28 IIsem ECE Yes Yes agree Agree Strongly agree 4Ino
9OV | AO440¢ ¢ ac
199Y 1 AO440eksrmee.ac.| GADDA UPENDRA B.Tech 1991 A0440 Strongly
291 Ilsem ECE Yes Yes agree Agree Strongly agree 4Ino
199Y 1 AO44 | (reksrmee.ac.1 by
= GADDE ANUSHKA (W) B.Tech 199Y1A0441 Strongly
301 IlIsem ECE Yes Yes agree Agree Strongly agree 5{no
199Y 1AO44 2nksrmee.ac. i |GAIJALA NAVYA TEJASREE  [B Tech 199Y1A0442 Strongly
31 (W) ITIsem ECE Yes Yes agree Agree Strongly agree 4|nothing
[§14] 1443 S e.ac
L9V IADIIIRSIMECAC! | 5 A MPA SIVA KUMAR B.Tech 199Y1A0443
32|12 IlIsem ECE Yes Yes agree Agree Strongly agree 5|Nothing
199Y 1 AU444aksrmee.ac. |GANDIKOTA SWARNALATHA|R Tech 199Y 1 A0444
33t W) Illsem ECE Yes Yes agree Agree Strongly agree 4|no
1991 AD4464ksrmee ac.i [GANGIREDDY SAI B.Tech 199Y 1 A0446
34/" FRAVALLIEA (M) IIsem ECE Yes Yes agree Agree Strongly agree 4|Nothing
99Y | AD4dS@ksrmee ¢
L2IVIAG 3 hstmee e |51 1 A PRASANNA KUMAR ~ [B-Tech 199Y1A0448
35[0 IlIsem ECE Yes Yes agree Agree Strongly agree 4{Good
199Y 1A0449wksrmee.ac 1 [GOPANA VISHNUVARDHAN B Tech 199 1 A0449
36|n NAIDU Iisem ECE Yes Yes agree Agree Strongly agree 5|Good
99Y 1 A0450 ksrmee ac i
LIOVIAGIS0URSIMECAC] | Ty A YESWANTH B.Tech 199Y1A0450
37| IIlsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y1A045 1 @ksrmee ac.i [GOURIPEDDIK 8 B.Tech 1991 A0451 Strongly
38[" SREEDHANYA (W) [1Isem ECE Yes Yes agree Agree Strongly agree 5|Good




9Y1A0452 Mee.ac.
L9V IAG2wkstmeeact | iy yAM SHARATH B.Tech 199Y1A0452 Strongly
391 IlIsem ECE Yes Yes agree Agree Strongly agree 5|Good
99Y | AO456:ksrmee.ac
-r';’-*1*‘”*‘*3”"‘““&‘—‘-& JANGAMSETTY VINOD B.Tech 199Y1A0456 Strongly
40" Illsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1AD4590eksrmee.ac) |[KADAVAKUTI SOWMYA B.Tech 199Y | A0459
41" PRIYA (W) Illsem ECE Yes Yes agree Agree Strongly agree 4{Good
199Y 1 AD460 @ ksrmee ac
YIAQIOOURSINCEAC! |y A ARLA SAGAR B.Tech 199Y1A0460
421 [1Isem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1 A046 1 wksrmee ac i B.Tech
43|n KAKE SAIBHARATH [lIsem ECE 199Y1A0461 Yes Yes agree Agree Strongly agree 5|Good
199Y TAQ46 3 ksrmee ac. i KALUVALA SREEVIDYA (W) B.Tech 199Y1 A0463
441 IlIsem ECE Yes Yes agree Agree Strongly agree 5|Good
L9OY1AGAOHksIME AC | o MBAM MANOJ KUMAR  [B-Tech 199Y1A0464
45|n IlIsem ECE Yes Yes agree Agree Strongly agree 5|Nothin
g £l gly agl g
99Y 1 AD468ksrmee ac i
LOVIADd6B@hsnneeac |y sy AM VINAY B.Tech 199Y1A0468 Strongly
46|" Illsem ECE Yes Yes agree Agree Strongly agree 5|Nothing
199Y 1A047 ksrmce.ac
VIADI71@eksrmecaCl |y oMPALA SAI CHARAN  [B.Tech 199Y1A0471
47|" [llsem ECE Yes Yes agree Agree Strongly agree S|very good
T99Y 1 ADAT5 kstmee ac | |[KONDAMUGARI EESHITHA | g pach 199Y1A0473
48(" RACHANA RAVINDRA (W) fjjjgem ECE Yes Yes agree Agree Strongly agree 5|very good
99Y | A0479% ksrmee ac
! (ALIESIMEEAE] i NDHARAPU VENKATESH  |B.Tech 199Y1A0479 Strongly
49[" IlIsem ECE Yes Yes agree Agree Strongly agree 5|very good
99Y 1 AD483wk :
L2OYIADASIRASINCE 261 |y )RUVA LAKSHMANNA  |B.Tech 199Y1A0483 Strongly
50[1 Illsem ECE Yes Yes agree Agree Strongly agree 5|nothing
99Y ] A0484 ksrmee.ac.i
199Y1A cksrmee.ac.i KURUVA SAI PRAKASH B.Tech 199V 1A0484
s1f* Illsem ECE Yes Yes agree Agree Strongly agree 5|Good
199Y 1 A0485eksnmee.ac.) [KUTEDDULA JASWANTH B.Tech 199 A0485
52| REDDY Illsem ECE Yes Yes agree Agree Strongly agree 5|Good
9¢ AD487 wksrmee
-’-\--’--'—-\’-“ AASTERSIMEC ST |n Al VARDHANNAIDU — [B.Tech 199Y 1A0487
1
53 IIsem ECE Yes Yes agree Agree Strongly agree 5|nothing




199Y | AOAESksrmee ac
OAEILRSIMECAC |gpy A 1k MOHAMMED GHOUSE [B.Tech 199Y1AQ4E3
saf" IlIsem ECE Yes Yes agree Agree Strongly agree 4 5[nothing
199Y 1 AQ4EA ks B0
' A aksnnceacl [y a1k MOHAMMED YASEEN [B:Tech 199Y1A04E4 _
55| Illsem ECE Yes Yes agree Agree Strongly agree 4 5|nothing
199Y 1 AQ4ES ksrmee.ac.i |SHAIK MUNAZZAH FATIMA | Tech 199Y | AO4ES
56" W) Illsem ECE Yes Yes agree Agree Strongly agree 4 5|Good
199Y 1 AD4L6i0ks C.ac
129X ADAEO@hstmeeaed {1 MUSAB AHAMED  |B.Tech 199Y1AO4EG
57|° I1lsem ECE Yes Yes agree Agree Strongly agree 5 5|Good
199Y | AO4ET @ksrmee ac i [SHAIK RUMMESA KOUSAR  |B Tech 199Y 1 AO4E7
s8I0 (W) Illsem ECE Yes Yes agree Agree Strongly agree 5 5{very good
199Y | AD4ES8Gksrmee.ac. i
VIAMES@hsrmee ! lgyATK SADAK ALL B.Tech 199Y 1AO4ES Strongly
59" llsem ECE Yes Yes agree Agree Strongly agree 5 5|very good
199Y 1 AQ4EYeksrimee.ac. |
SHAIK YUNOOSH HUSSAIN  |B.Tech 199Y 1AO4E9 Strongly
60[" Illsem ECE Yes Yes agree Agree Strongly agree 5 5[nothing
199Y 1 Al Ourk @ AC
PN LA hsinee. ¢! f6np A VATAM SUDHARSHAN |B-Tech 199Y1A04F0
61{n Ilisem ECE Yes Yes agree Agree Strongly agree 5 5|no
199Y 1 AO4E L ieksrnee.ac i |SIKILIGIRI SAMEER B.Tech 199Y 1 AO4F1
62[n AHAMMAD Illsem ECE Yes Yes agree Agree Strongly agree 5 5|Nothing
199Y 1 AD4T 3arksrm, SREERAMADASU VENKATA o . 199V 1 ADAF3
63[" NAGA SAL Illsem ECE Yes Yes agree Agree Strongly agree 3 4Ino
!
4 . @ él\ S o o
t é \J E= S .Mni Y
Coordingtor HOD Principal

Professor & H.O.D.
Departmeni of E.C.E.

K.8.B.M. Coitege of Engineering

FADAFA - 516 003

PRINCIPAL

K.S.R.M. COLLEGE OF ENGINEERING
KADAPA - 516 003. (A.P.)




