Kandula Srinivasa Reddy Memorial College of Engineering (Autonomous)
Kadapa-516003. AP
(Approved by AICTE, Affiliated to INTUA, Ananthapuramu, Accredited by NAAC)
(An ISO 9001-2008 Certified Institution)

Department of Electronics and Communication Engineering

-
LiGHTED TO LIGHTEN

wnd

Certification Course

On

“C++ language”

Resource Person : Sri S Khaja Khizar
Course Coordinator: ~ Dr. S L Prathapa Reddy
Duration . 09-04-2022 to 24-04-2022

K.S.R.M. COLLEGE OF ENGINEERING
(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003

-

EFs 0 Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu, ~ KSNR
An ISO 14001:2004 & 9001: 2015 Certified Institution

Lr./KSRMCE/ (Department of ECE)/2020-21

Date: 02/04/2022

To

The Principal

KSRM College of Engineering
Kadapa, AP.

Sub: KSRMCE - (Department of ECE) — Permission to conduct a certification course on “C++ Language”
—Request—reg.

Fexk

Respected Sir,

With reference to the cited, the Department of ECE is planning to conduct a certification course on
“C++ Language” for All B.Tech IV SEM students from 09-04-2022 to 24-04-2022. In this regard, I kindly
request you to grant us permission to conduct a certification course. This is submitted for your kind perusal.

Thanking you sir,

{&)hﬂ” s §- 1)

Yours Faithfully

w - J ’(N(Coordinator
s

an““ Dr .S L Prathapa Reddy
Cc:

To The Director for Information

ey
To All Deans/HODs \) e}w\‘(\\E’i_/f/
/// : N\M \\'\ s (s
: S <7 PP A ES
N e
5@\‘\'(’0&?&‘;‘5&6@3
2 PO

1@3@;{}/ksrmce.ac.in Follow Us: E3 @ %@ /ksrmceofficial

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)
Kadapa, Andhra Pradesh, India - 516003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu. K%l:l 5
An ISO 14001:2004 & 9001: 2015 Certified Institution

Date: 02/04/2022

Circular

All the B.Tech IV SEM students are hereby informed that the Department of ECE is going to
conduct certification course on “C++ Language” from 09/04/2022 to 24/04/2022. Interested students may
register their names with respective faculty members on or before 06/04/2022.

For any queries contact, 4 M
HOD

Coordinator

Professor & HO.D.
Department of E.C.E.
K.8.R.M. College of Engineering
KADAPA - 516 083

Dr .S L Prathapa Reddy, Associate Professor, ECE Dept.,

‘c to:

The Management /Director / All Deans / All HODS/Staff / Students for information

The IQAC Cell for Documentation

5 /ksrmce.ac.in Follow Us: Ei @ % /ksrmceofficial

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)

Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated to JNTUA, foch s
Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution
Department of Electronics & Communication Engineerin
Certificate Course on C++ Language
Registration Form
S.No. Roll.No. Name of the Student Branch Sem Signature
1 2o \1Roliol A - Haxthq \Novd han Lo & SEVANY
2 | 26QY1Acum A SinDi@ (ke S100lg_
20991A6UOS |A. SHASI4iIIkaLyg |Ecé Shas kel
QoquiAn Hog Bandi kKalyan; ELF Beum] Je i
2094180412 | Banne Néreth |ece EM‘L@/'
6 |J07YIAo i3 | Boper] SANGEETHA |pce Brogeinl_§engefla,
7_|20ayA0y19 | RovA SUDHEER | EcC el |
209Y1Phoudi|C: dnalle Abdlutlan |Ece Wt ld—
° [2oavlanMY chakali. Pyabhagay | € e A
10 1209Y1A0424 chamanch; Venlala lokesh] ECE Udoodtelo

M 1 90a4ou24 . Ra;uhwmm Raddy ece

R RR R cREE PRPROER 2

2 [209Y14 0430 C. MADHAVE ECE Modbkog<

13 1204Y1AQU3Y | ¢ . Hawt Prival Ece iy

14 [MVIADG R} D). Swo.ah . |ECE D Zivai

5 19o9ylAolll | p. Saetha £l D-Suefha-

:: doq Y1 ADa5| 5 =,/a/ug 5/@&7@ ECE A M[ﬁg/m
209Y1Aogyq | Gy, Ve ¢ £ce Yt

18 | PogqVipousu| G- Sai Piathap Epg % b Lggy

® 10 9VAD LS fn BHARGAVTE | FeE | 1V | G eptd]

20 |OIYIAOLA |G- Hav kvizhoa Ece |V |G- Hextgend)

211909 v [Pt k. Anitha cce Ty kofinitla.

2 PAYIAOUIO| K- Grxesh ECE W Sanes)-

2 RogyAo@ay | K. Lavanyn €ce | U k_v_{(‘\:u_i:

2 DcAaNIAyER] s pooifth a cce | W | Peiitha

® 109VIAcL8a | M. Suiiths Ran; (6 [Sjothe.

25 _|90QYA0"SS | 1 . Ku9na SoGoud | ece | 7 | oo, 1
2 20TY1P0490 | M - [i2inal b Teddy |EE | W |y

23| JoIVACLA3| M- Lajiv N ERE | Mok —
2 1909Y180ua3 N Tocho KalypnReddV|Ere | T | Ndabaie)
0 1209Y/hohAo| N _Cubbarayedy 4 - Frihilien,
3 RoavtaouAa| Al #hamatd? €ce | IV |oh LA

2 |OAM\RMR| P, Chordta tekhal lece | 1o P@M
P Rogyldobral P Osha Rars Cre | SV D.@ubag

3 191 Q0uls| P Gisinatn Redd, Ee | U Ciiaiies S
3s ViAogCol S A@Sn | €ce [N Q el
56 |9091A OLCA| S VaShnth e 9 | &R

2 : :a bo €06 | TV | Shadsssedde
8| A0TYPO/E | 4. Mnﬁommm/ ﬁ]: gl ECE | IV sppbpss |
¥ |ed Y AoLp)| sHak € pBFL) EcE | SEh

90 | a¥1A0uDU| &. VenKata as _lece | Ju \/ﬂégim_
1 l209videting | S: gompandh@ddy “ | cce | Sonaadl. |
2 RoaVidouel | T-Rpddbala’ | cce |[TE | @«u _
P 1209V Ibowes | T pitigh ey Qogfel, | €2 | TO rrum/Q@
Y 20IRGET | T KdSumey Ece | W <@,

s LoayiAOYH [V, Nagdfn Gee | W [VNewdde
% |2094)POYEST Ve jwa_?ba ECE | T [Mlwofu . .
Y 120941AouE | Y. 1344pATH) CCE | TV Y Bhonadh
i QogritAoumg Y. SaliPvan Qedrlu Err | v Y. Safle'Sain
¥ 191N5A0GR2] B pallay: €ce | i Br:z—,j(mu
*_1919Y5A0k03 | B: Da%imala € | TV | Rbringds
S A9XBALUER| & HATWA Ccf |V G g |-
2 |q) Wﬂuo? Mo Aounike | . Bep LV _@Aé
S 13M¥EAEIl | M- Mo Ra EE NV \Mordaes |
*_QNPOL QM- Malia Ghiva cce W |Mdoa

¥ |ayoni3 | p. Nagend e Ece v Wetrera-

¥ av®ouiy | P. fag khan e | OV (Parupbld
Q1A FoNe | S Al inead cce |lv gt
B 23YFA0WG | S darnkumy Reldy | ece [e

> 2189500413 | Qe Mobammod st] ECE [V | Mooleoumad
© _|HIySAUIB | Vand adi Baby L e 1 1 YVoooad
. |aaysachos| G. Kauga ece | W Sbaya.
® _19yshotot G Madhubumen | ece [0 g odh by
63

Proessor & H.O.D,
Department of E.C.E.
KS.BM Coflege of Engineering
KADAP? . 516 ne3

C++ Language Syllabus

Overview:

C++ language is a superset of the ‘C’ language and was initially known as “C with
Classes”. In "C" operator ++ is used to increment the value by 1. That means to the language C’,
developers have added some extra features and hence named as C++. C++ is a general purpose
programming language and supports object oriented programming features.

Course Objectives:

e Understanding about Structured Programming.

e Understanding about object oriented programming.

e Gain knowledge about the capability to store information together in an object.

e Learn how to store one object inside another object

e Learn use of one method can be used in variety of different ways

e Understanding the process of exposing the essential data to the outside of the world
and hiding the low level data.

e Create and process data in files using file 1/O functions.

Module 1:
C Language Fundamentals

Data Types, Constant and Variables,

Statements, Expressions, Operators,

Control structures, Decision making and Branching, Decision making & looping,
Functions, Arrays, Pointers, and File Handling

FAQs

Assignment - I

Module 2:
C++ Overview, Functions and Variables

C++ Characteristics

Object-Oriented Terminology
Polymorphism

Object-Oriented Paradigm

Abstract Data Types

I/O Services

Standard Template Library
Functions: Declaration and Definition

Variables: Definition, Declaration, and Scope
Variables: Dynamic Creation and Derived Data
Arrays and Strings in C++

Module 3:

Classes in C++, Operator Overloading

Defining Classes in C++
Classes and Encapsulation
Member Functions
Instantiating and Using Classes
. Using Constructors
Multiple Constructors and Initialization Lists
Using Destructors to Destroy Instances
Friendship
Operator Overloading
Working with Overloaded Operator Methods
[nitialization vs. Assignment
The Copy Constructor
Assigning Values
Specialized Constructors and Methods
Constant and Static Class Members
FAQs
Assignments-II from Module2 & Module3

. Module 4:
Storage Management, Inheritance and Polymorphism

Memory Allocation

Dynamic Allocation: new and delete
Overview of Inheritance

Defining Base and Derived Classes
Constructor and Destructor Calls
Overview of Polymorphism

FAQs

Assignments — 111

Module 5:

Streams & Templates

Standard Streams

Manipulators

Unformatted Input and Output

File Input and Output

Template Overview

Customizing a Templated Method
Standard Template Library Containers
FAQs

Assignments - [V

Textbook:
1. Programming in ANSI C - Balaguruswami, TMH
2. E. Balaguruswamy, Object-Oriented Programming in C++. 4 ed, Tata McGraw-Hill.
3. Ashok N. Kamthane, Object-Oriented Programming with ANSI & Turbo C++,

Pearson Education.

At the end of the course participants will be able to

Work with Data types, control statements and loops.
Work with Arrays, Functions and pointers.

Work with Object Oriented Programming concepts
Work with Inheritance, Polymorphism and Templates
Work with File Streams.

K.S.RM. COLLEGE OF ENGINEERING

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India— 516 005

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Electronics & Communication Engineering

Certificate Course on C++ language

Schedule
S.No Date Time Faculty Topic
1 09/04/2022 | 3 PM to 4PM | Dr G Hemalatha Inauguration
Sri Khaja Khizar
Dr S L Prathapa Reddy

2 9/04/2022 | 4PMto SPM | Sri Khaja Khizar Introduction, C Language
Fundamentals.

3 11/04/2022 | 3PM to 4PM | Sri Khaja Khizar Data Types

4 11/04/2022 | 4PM to 5PM | Sri Khaja Khizar Constant and Variables,

5 12/04/2022 | 3PM to 4PM | Sri Khaja Khizar Statements, Expressions,
Operators

6 12/04/2022 | 4PM to 5PM | Sri Khaja Khizar Control structures, Decision
making and Branching,
Decision making & looping

T 13/04/2022 | 3PM to 4PM | Sri Khaja Khizar Functions, Arrays,

: Pointers, and File Handling

8 13/04/2022 | 4PM to SPM | Sri Khaja Khizar C++ Overview, Functions and
Variables

9 14/04/2022 | 3PM to 4PM | Sri Khaja Khizar C++ Characteristics
Object-Oriented Terminology

10 14/04/2022 | 4PM to SPM | Sri Khaja Khizar Polymorphism
Object-Oriented Paradigm

11 15/04/2022 | 3PM to 4PM | Sri Khaja Khizar Abstract Data Types
1/0 Services
Standard Template Library

12 15/04/2022 | 4PM to SPM | Sri Khaja Khizar Functions: Declaration and
Definition

13 16/04/2022 | 3PM to 4PM | Sri Khaja Khizar Variables: Definition,
Declaration, and Scope

14 16/04/2022 | 4PM to SPM | Sri Khaja Khizar Variables: Dynamic Creation
and Derived Data

15 17/04/2022 | 3PM to 4PM | Sri Khaja Khizar Arrays and Strings in C++

k7 17/04/2022 | 4 PM t0 5SPM | Sri Khaja Khizar Classes in C++, Operator

Overloading

lives on..

KSNR

K.S.R.M. COLLEGE OF ENGINEERING

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India— 516 005

~ Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

18 18/04/2022 | 3PM to 4PM | Sri Khaja Khizar Defining Classes in C++
Classes and Encapsulation

19 18/04/2022 | 4 PM t0 5SPM | Sri Khaja Khizar Member Functions
Instantiating and Using Classes

20 19/04/2022 | 3PM to 4PM | Sri Khaja Khizar Using Constructors
Multiple Constructors and
Initialization Lists

21 19/04/2022 | 4 PM t0 5SPM | Sri Khaja Khizar Using Destructors to Destroy
Instances Friendship
Operator Overloading

22 20/04/2022 | 3PM to 4PM | Sri Khaja Khizar Working with Overloaded
Operator Methods

23 20/04/2022 | 4 PM t0 5PM | Sri Khaja Khizar Assigning Values
Specialized Constructors and
Methods

24 21/04/2022 | 2PM to 3PM | Sri Khaja Khizar Memory Allocation
Dynamic Allocation: new and
delete

25 21/04/2022 | 3 PM to 4PM | Sri Khaja Khizar Overview of Inheritance

26 21/04/2022 | 4PM to 5PM | Sri Khaja Khizar Defining Base and Derived
Classes

27 22/04/2022 | 3 PM to 4PM | Sri Khaja Khizar Constant and Static Class
Members

28 22/04/2022 | 4PM to 5SPM | Sri Khaja Khizar Initialization vs. Assignment
The Copy Constructor

29 [23/04/2022 | 4 PM t0 5SPM | Sri Khaja Khizar Constructor and Destructor
Calls

30 23/04/2022 | 3PM to 4PM | Sri Khaja Khizar Overview of Polymorphism

31 24/04/2022 | 4 PM t0 SPM | Sri Khaja Khizar Exam

32 24/04/2022 | 3PM to 4PM | Dr G Hemalatha Exam and certificate distribution

Sri Khaja Khizar
Dr S L Prathapa Reddy

@

A g

COORDINAT X

Department
K.8.R.M. Coliege of

QP;OH-

Professzor & H.0.D

et

251 i et
iglieeTing

A o 4 -~ 4
MADAPA - 516 082

KSNR

lives on.,

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)

Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.
An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Electronics & Communication Engineering

Certificate Course on C++ Programming

Attendance Sheet

S.No | Roll Num Name of the Student = a el al alal al al gl alalalal gl ala
(o (o} (o] ol o ol ol o o ol o1 o ol ol ol ol
=] (—] =] (=) > (=] (—] = (= [—] = (=] (=] [—] (=1 <
S |8 |a S|lqlaleq e glggggs
== = == - - =< = -+ - = - =< - -+ -+ -+
= |2 |S2glselelsl2lglsls gl gl
[=a) (=1 — o1 o -t w =] e [+ o] =2 - — (] (o] =
= — | o | vt | vt | vt | vt [v | vt | o= | Y N | X
1 209Y1A0401 | A. HARSHA VARDHAN el pl A FrI PlRPIP| PLA plelplPlP
2 209Y1A0402 | AKKULAYAPALLE SIDDIQ Pl P plpPIA A DIPIP plelp P
3 209Y1A0405 | AYALURI SHASHIKALA Al | PlPlAIPIP R T Dl P
4 209Y1A0409 | BANDI KALYANI D pPIPIDIAIDIP AlALPIPD 2
5 209Y1A0412 | BANNE NARESH Ko lp elp Plplp Al PP P n
6 209Y1A0417 | BOGEM SANGEETHA plpP |blPp PlpPlAALID el p b
7 200Y1A0419 | BOYA SUDHEER Alp lpPlpPlPIlAIPIPIP biblplelp P P
8 209Y1A0421 | CHABUKSAWAR SHAIK ABDULLAH glelplpliep P A IZlE e AAIDPID
9 209Y1A0422 | CHAKALI PRABHAKAR s(p lplplpplelplplplelp|A AlD
10 209Y1A0425 | CHAMANCHI VENKATA LOHITH e ol plip Alp @ P lAAIPIP PP
11 | 209Y1A0427 | CHAVVA RAJESHWARA REDDY > P AlplplalplplalPP |P PlP[D
12 | 209Y1A0430 | CHINNAKOTLA MADHAVI Pl PIAPPIPIP AP pleppID plp
13 | 209Y1A0433 | CHINTHA HARIPRIYA plplpl PlAalPIDP P AA el P PP
14 | 209Y1A0437 | DANDU SIVAIAH plP P PIPIAIAIPIPIPIPIPIP p PP

R A AR A W
15 | 209Y1A0441 | DEVAGANI SWETHA polp LpE e gl L P S Pl e £
16 209Y1A0445 | DUDEKULA JAYA CHANDRA Y P (ARl lp @ g Pl p e le ¢
17 | 209Y1A0449 | GAMPA VAMSI BEACALATE AT EEr R HEAT AT EE 4l
18 | 209Y1A0454 | GODLAVETI SAI PRATHAP p e lelple [P0 FIT P f lajpiplf
19 209Y1A0457 | GORLA BHARGAVI 4 plE R [e PR AW A 4 .l
20 | 209Y1A0461 | GUDISENAPALLE HARI KRISHNA p P lpalPlPplp(plrle plplPipleple |l
21 | 209Y1A0467 | KAMMARI ANITHA e || Fr @ elplp P 1? p |l PloelF
22 | 209Y1A0470 | KARROLLA GANESH g e ligle|ple v e flg | £if f plp 4
23 | 209Y1A0474 | KOVVURU LAVANYA &L e gl e e p IR R B
24| 209Y1A0478 | LAKSHMIGARI POOJITHA g Flelellgle ple gl el elpf B
25 | 209Y1A0482 | MADDEPALLI SUJITHA RANI BRI A 2R3 TR BTN S))
26 | 209Y1A0485 | MALLISETTY KRISHNA SAI GOUD P e e lplp Al e FplE g lpie | ¢ {7
27 209Y1A0490 | MEKALA GIRINATH REDDY e e [AlEl e Tale pig | 1p Ao p ¢
28 209Y1A0493 | MURABOYANA RAJIV Pl [glp|8 HlAlY ¢FI€ @ plPlpip 4
29 209Y1A0497 | NAGURU INDRA KALYAN REDDY Fg lup kR0 FlplplE ple iy P
30 209Y1A04A0 | NANDYALA SUBBARAYUDU Pl e ln L ROLE L PR R ¥
31 | 209Y1A04A3 | NEELOLLA HARATHI 21e [olelo o plelsle Alp¢le PP
32 | 209Y1A04A8 | PANDLA CHANDRA SEKHAR e P lp el (Elgle e Ppiyl A Q 0. F
33 | 209Y1A04B2 | PENDEM USHA RANI Alp lelple|elf (¢ e8P A AITP (£
34 | 209Y1A04B6 | PULLALAREVUA GIRINATH REDDY p Lr (plp lelelp P lplgle @ | A b b f
35 | 209Y1A04CO | S ARSHIYA rlPelAlelplelplPlp @0 P PRI PLp
36 | 209Y1A04C2 | SANA YASHWANTH F ol [BTY[E @ g ¢y (¢ @ iy 1 F
37 | 209Y1A04C5 | SHAIK BEEBI AYESHA SIDDIKA F e [alplple g ¢lpgl®ie (P p.¥le P
38 | 209Y1A04C8 | SHAIK MOHAMMED FAIZAN g ¢ [Alp | Elegle PR E (Plo ! BLY [BLP
39 | 209Y1A04D1 | SHAIK SAHEEL Ple lalplole el Alelple g [PP
40 | 209Y1A04D4 | SINGANAMALA VENKATA SAI P lE Al AR I LRI g iy 1 | & 0Fe i
41 209Y1A04D6 | SUDHA SUMANTH REDDY PlY [Alplp|f |p e lrle g el Bip
42 | 209Y1A04E1 | TARIGONDA REDDIKALA e le [AlPlplelp|llr|PlY All PP
43 | 209Y1AO4E3 | TATIGOTLA NITISH KUMAR REDDY ¢ 1° lalelp |0l p@ P |P|€IP lAIRIDIP
44 209Y1A04E7 | THUNGA KUSUMA L& e 28 CTEIE P e iR b ¥
45 209Y1A04F1 | VAKA NANDINI 2 | P &lgly#TPIE plRIF [BVRILIP | F

Q

46 | 209Y1A04F5 | VEERAPURAM SWAPNA PP PAPPAPPIPPPIPIPIAIP
47 209Y1A04F7 | YAKASI BHARATH P A AP | PIP|P PplelPlprle [PIA P P
48 209Y1A04F9 | YELAMPALLE SAIKIRAN REDDY PP PP |AlAIRPIPIDIPIP | PIDIP

49 219Y5A0402 | BODDU PALLAVI P IpIPIPILAID 0 T | e 8 20 0 N iR o P
50 219Y5A0403 | BOGGULA PARIMALA p P PIPIPIDIA P AP IARAIP P P A
51 | 219Y5A0405 | G KAVYA elPlelAalplrlp nlAalePlPIPP P p
52 219Y5A0406 | GANJI KUNTA MADHU KUMAR Pl g vip|E AP P IAIDIPpID e p
53 | 219Y5A0408 | GORLA MAINA Alp P |plP|P|P P IplANID P P p
54 | 219Y5A0409 | KARELLA RAGHAVENDRA) p |G |pPipIPID AlplPAIPIDIPID
55 | 219Y5A0411 | MEESALA MOUNIKA o la BllPpBRIP plpplplplelelplP
56 219Y5A0412 | MUKKA MALLA SHIVA p AR [P|P p AlPD P IPlpIP (PP
57 219Y5A0413 | PASUPULETI NAGENDRA PlA ISP Yie AlALP AAIAI PP P
58 219Y5A0414 | PATAN FARUQ KHAN pl o oV PIPIPIC LA F PlelhAlpla
59 | 219Y5A0415 | SANE ARUN KUMAR SR ARNNINANAL: Al Al AL CIP PP
60 | 219Y5A0416 | SANGALA CHARAN KUMAR REDDY ARl AFY rlelalp | MYIPLAPIAIP
61 219Y5A0417 | SHAIK MAHAMMAD SHARIF YyiloE g el PAIFIPI P IPIPIPIA
62 219Y5A0418 | VANDADI BABY P A FIxg 2R Pl #rE E | F

c%;,ﬁﬁ,@%/\

Suxes ?’Féfaﬁﬁpg % 7

E)ai:aa’anen :,‘ g‘—_ *-”H
K.8. ﬁ b& QG;L. "&f Lﬁé,i]i'ﬁfﬁg"v‘"
Kf*f\. ARA - 615 093,

K.S.R.M. COLLEGE OF EN GINEERING

(UGC - Autonomous)
Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & A MMiliated to INTUA, Ananthapuramu,

Department of ECE
Certification Course on “C++ Language”

DATE(S)

Yenue : 09-04-2022 to

CRILAB : - 24-04-2022
Cordinators Resource Persons

Dr.S.L.Prathap Reddy : . :
Assoc.Professor, Dept of ECE Sri.S.Khaja Khizar

Dr.G. Hemalatha -~ Dr. V.S.S. Murthy - Dr. Kandula Chandra Obul Reddy
H.O.D Principal Managing Director

Smt. K. Rajeswari = Sri K. Madan Mohan Reddy - Sri K. Raja Mohan Reddy
Correspondent Secretary, Vice-Chairman Chairman
Tresurer

(- /ksrmce.ac.in Follow Us: Ed @ % /ksrmceofficial

K.S.R.M. COLLEGE OF ENGINEERING

(UGC-AUTONOMOUS)
Kadapa,Andhra Pradesh, India- 516 003

-

UigHTED 10 LIGHTEN

=~y Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

ACTIVITY REPORT

Certification Course

On
“C++ Language”

09" April 2022 to 24™ April 2022

. Target Group : IV SEM Students
Details of Participants 3 63 Students
Coordinator(s) 2 Dr S L Prathapa Reddy, Assoc. Prof, Dept. of ECE
Organizing Department Department of Electronics ;nd Communication Engineering
Venue : CRI lab
Description:

Certification course on “C++ Language” was organized by Dept. of ECE from 09-04-2022 to 24-04-
2022. Sri S Khaja Khizar acted as Course instructor. C-++ is a general-purpose programming and coding
. language. C++ is used in developing browsers, operating systems, and applications, as well as in-game
programming, software engineering, data structures, learning was explained.

@& /ksrmee.ac.in Follow Us: E3 @) 9% /ksrmceofficial

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - Autonomous)
Kadapa, Andhra Pradesh, India - 516003
Approved by AICTE, New Delhi & Affiliated (o JINTUA, Ananthapuramu.

Department of ECE
Certification Course on “C++ Language”

DATE(S)
Venue : 09-04-2022 to
CRILAB : 24-04-2022
Cordinators Resource Persons

Dr.S.L.Prathap Reddy ; z :
Assoc.Professor, Dept of ECE Sri.S.Khaja Khizar

Dr. G. Hemalatha -~ Dr. V.S.S. Murthy - Dr, Kandula Chandra Obul Reddy
H.0.D Principal Managing Director

Smt. K. Rajeswari = Sri K. Madan Mohan Reddy S K. Raja Mohan Reddy
Comespondent Secretary, Vice-Chairman
Tresurer

Chairman

@& /ksrmee.ac.in Follow Us: Ed @ 9% /ksrmceofficial

ted

ator(s

St

.

nsE

/ksrmce.ac.in Follow Us: K3 ﬂ W /ksrmcgo

V. c.5 Wiy
‘Prof V SS Murthy
_ Principal

U e Mdf‘l
Prof V S S_ Murthy
Prmc1pal-,

Roll NO. 4?/ 9\/5% &/ﬁ%
'has attended the Certlficatlon course on "C++ Language from

09 04 22 to 24 04 22 Orgamzed by Dept of Electromcs and

U £.S i
Prof V S S Murthy
Pr1nc1pal

Feedback form on Certlflcate Course

C++ Language(09-04-2022 to 24-04-2022)

* Required

1. Roll Number *

2. Name of the Student *

3. B.Tech Semester *

Mark only one oval.

() ISEM
C_ D NSEM
C_ D mSem
() IVSEM
() VSEM
(D VISEM
() VI SEM
(D VIISEM

4. Branch *

Mark only one oval.

D civil Enginerring
C_EEE

COME

(_)ECE

(COcse

() AlgML

5. Email ID *

6. Is the course content meet your exceptation. *

Mark only one oval.

Q Yes
Q No

7. Is the lecture sequence well planned. *

‘ Mark only one oval.

C_J Strongly disagree
Q Disagree

() Neutral

D Agree

[ond) Strongly agree

8. The contents of the course is explained with examples. *

Mark only one oval.

D Strongly disagree
@ Disagree

Q Neutral

() Agree

(") strongly Agree

9. Is the level of course high. *

Mark only one oval.

= Strongly disagree
D Disagree

() Neutral

() Agree

% Strongly Agree

10. Is the course exposed you to the new knowledge and practice. *

Mark only one oval.

(__) strongly disagree
D Disagree

D Neutral

£) Agree

) Strongly Agree

11. s the lecture clear and easy to understand. *

Mark only one oval.

C Strongly disagree
(__ Disagree

D Neutral

() Agree

C) Strongly agree

12. Rate the value of the course increasing your skills. *

Mark only one oval.

CD Strongly disagree
D Disagree

() Neutral

C) Agree

Q Strongly Agree

13. Any suggestions

This content is neither created nor endorsed by Google.

Google Forms-

K.S.R.M. COLLEGE OF ENGINEERING

(UGC - AUTONOMOUS)

|

Kadapa, Andhra Pradesh, India - 516003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

Department of Electronics and Communication Engineering

Feedback Form

Is the Is the course |Is the
Is the course |lecture [The contents of exposed you |lecturer Rate the value
content met [sequenc [the courseis [ls the level [to the new clearand |of coursein
Year & your ewell |explained with |of course knowledge |easyto increasing
S.No. |Email address Name of the student Semester Branch |Roll Num expectation [planned |examples high and practices [understand [your skills Any issues
200v1n0401@ksr [A- HARSHA 209Y1A040 Strongly
mce.ac.in VARDHAN B.Tech IVsem |ECE 1 Yes Yes Agree Agree agree 4 5|Nothing
soar1a0a02@ksr | PKKULAYAPALLE 209Y1A040 Strongly
mce.ac.in SIDDIQ B.Tech IVsem [ECE 2 Yes Yes Agree Agree agree 5 5|Nothing
209Y1A0405@ksr AYALURI 209Y1A040 Strongly
mce.ac.in SHASHIKALA B.Tech IVsem |ECE 5 Yes Yes Agree Agree agree 4 5|Good
209Y1A0409@ksr 209Y1A040 Strongly
mce.ac.in BANDI KALYAN| |B.Tech IVsem |ECE 9 Yes Yes Agree Agree agree 5 5{nothing
209Y1A0412 @ksr 209Y1A041 Strongly
mce.ac.in BANNE NARESH [B.Tech IVsem |ECE 2 Yes Yes Agree Agree agree 5 5|Good
209Y1A0417 @ksr BOGEM 209Y1A041 Strongly
mce.ac.in SANGEETHA B.Tech IVsem [ECE 7 Yes Yes Agree Agree agree 4 5|very good
209Y1A0419@ksr 209Y1A041 Strongly
mce.ac.in BOYA SUDHEER |B.Tech IVsem |ECE 9 Yes Yes Strongly agree |Agree agree 4 3|Nothing

209Y1A0421 @ksr CHABUKSAWAR 209Y1A042 Strongly

8 mce.ac.in SHAIK ABDULLAH |B.Tech Ivsem |ECE 1 Yes Yes agree Agree agree 4lno
209Y1A0422 @ksr CHAKALI 209Y1A042 Strongly

9 mce.ac.in PRABHAKAR B.Tech IVsem |ECE 2 Yes Yes Strongly agree |Agree agree 5|Nothing
209Y1A0425@ksr CHAMANCH]I 209Y1A042 Strongly

10 mce.ac.in VENKATA LOHITH |[B.Tech Ivsem |ECE 5 Yes Yes Strongly agree |Agree agree 5|Good
209Y1A0427 @ksr CHAVVA 209Y1A042 Strongly

11 mce.ac.in RAJESHWARA B.Tech IVsem |ECE 7 Yes Yes Agree Agree agree 4|Good
209Y1A0430@ksr CHINNAKOTLA 209Y1A043 Strongly

12 mce.ac.in MADHAVI B.Tech IVsem |ECE 0 Yes Yes agree Agree agree 5|Good
209Y1A0433@ksr CHINTHA 209Y1A043 Strongly

13 mce.ac.in HARIPRIYA B.Tech IVsem |ECE 3 Yes Yes agree Agree agree 5|(Good
209Y1A0437@ksr 179Y1A043 Strongly

14 mce.ac.in DANDU SIVAIAH [B.TechIvsem |ECE 7 Yes Yes agree Agree agree 4]very good
200v1A04a1@ksr |[DEVAGANI 209Y1A044 Strongly

15 mce.ac.in SWETHA B.Tech IVsem |ECE 1 Yes Yes agree Agree agree 4|very good
209Y1A0445@ksr DUDEKULA JAYA Z209Y1A044 Strongly

16 mce.ac.in CHANDRA B.Tech IVsem |ECE 5 Yes Yes agree Agree agree 4|very good
209Y1A0449@ksr 209Y1A044 Strongly

17 mce.ac.in GAMPA VAMSI B.Tech IVsem |ECE 9 Yes Yes agree Agree agree 5|no
209Y1A0454@ksr GODLAVETI SAl 209Y1A045 Strongly

18 mce.ac.in PRATHAP B.Tech IVsem |ECE 4 Yes Yes agree Agree agree 5|nithing
209Y1A0457 @ksr 209Y1A045 Strongly

19 mce.ac.in GORLA BHARGAVI|B.Tech IVsem [ECE 7 Yes Yes Strongly agree |Agree agree 5|Good
209Y1A0461 @ksr GUDISENAPALLE 209Y1A046 Strongly

20 mce.ac.in HARI KRISHNA B.Tech IVsem |ECE 1 Yes Yes Strongly agree |Agree agree 4|Good
209Y1A0467 @ksr KAMMARI 209Y1A046 Strongly

21 mce.ac.in ANITHA B.Tech IVsem |ECE 7 Yes Yes Strongly agree |Agree agree 3|Good
209Y1A0470@ksr KARROLLA 209Y1A047 Strongly

22 mce.ac.in GANESH B.Tech IVsem |ECE 0 Yes Yes agree Agree agree 4|Good
209Y1A0474@ksr KOVVURU 209Y1A047 Strongly

23 mce.ac.in LAVANYA B.Tech IVsem |ECE 4 Yes Yes agree Agree agree 4|Good

209Y1A0478@ksr LAKSHMIGARI 209Y1A047 Strongly

24 mce.ac.in POOIJITHA B.Tech IVsem |ECE 8 Yes Yes Strongly agree |Agree agree 4|Good
209Y1A0482 @ksr MADDEPALLI 209Y1A048 Strongly

25 mce.ac.in SUJITHA RANI B.Tech IVsem |ECE 2 Yes Yes agree Agree agree 5|Good

VIALLISETTY

200v1A0ag5@ksr [KRISHNA SAl 209Y1A048 Strongly

26 mce.ac.in GOUD B.Tech IVsem |ECE 5 Yes Yes agree Agree agree 5|Nothing
209Y1A0490@ksr MEKALA 209Y1A049 Strongly

27 mce.ac.in GIRINATH REDDY |[B.Tech Ivsem [ECE 0 Yes Yes agree Agree agree 5(no
209Y1A0493@ksr MURABOYANA 209Y1A049 Strongly

28 mce.ac.in RAJIV B.Tech IVsem |ECE 3 Yes Yes agree Agree agree alno
209Y1A0497 @ksr NAGURU INDRA 209Y1A045 Strongly

29 mce.ac.in KALYAN REDDY B.Tech IVsem |ECE 7 Yes Yes Strongly agree |Agree agree 4lno
209Y1A04A0@ksr NANDYALA 209Y1A04A Strongly

30 mce.ac.in SUBBARAYUDU B.Tech IVsem |ECE 0 Yes Yes Strongly agree |Agree agree Slno
209Y1A04A3 @ksr NEELOLLA 209Y1A04A Strongly

3 mce.ac.in HARATHI B.Tech IVsem |ECE 3 Yes Yes Strongly agree |Agree agree 4[nothing
209Y1A04A8@ksr CHANDRA 209Y1A04A Strongly

32 mce.ac.in SEKHAR B.Tech IVsem |ECE 8 Yes Yes agree Agree agree 5|Nothing
209Y1A04B2 @ksr PENDEM USHA 209Y1A04B Strongly

33 mce.ac.in RANI B.Tech IVsem |ECE 2 Yes Yes agree Agree agree 4lno
209Y1A04B6@ksr PULLALAREVUA 209Y1A04B Strongly

36 mee.ac.in GIRINATH REDDY (B.Tech Ivsem |ECE 6 Yes Yes agree Agree agree 5|Good
209Y1A04C0@ksr 209Y1A04C Strongly

38 mce.ac.in S ARSHIYA B.Tech IVsem |ECE 0 Yes Yes Strongly agree |Agree agree 5|Good
209Y1A04C2 @ksr SANA 209Y1A04C Strongly

39 mce.ac.in YASHWANTH B.Tech IVsem |ECE 2 Yes Yes Strongly agree |Agree agree 5|Good
209Y1A0ACS @ksr SHAIK BEEBI 209Y1A04C Strongly

40 mce.ac.in AYESHA SIDDIKA |B.Tech IVsem [ECE 5 Yes Yes Strongly agree |Agree agree 5|Good
209Y1A04C8@ksr MOHAMMED 209Y1A04C Strongly

41 mce.ac.in FAIZAN B.Tech IVsem |ECE 8 Yes Yes agree Agree agree 4|Good

209Y1A04D1@ksr 209Y1A04D Strongly

42 mce.ac.in SHAIK SAHEEL B.Tech IVsem |ECE 1k Yes Yes agree Agree agree 5|Good
sovia00a@ks: |SINGANAMALA 209Y1A04D B

43 mce.ac.in VENKATA SAl B.Tech IVsem |ECE 4 Yes Yes agree Agree agree 5|Good
209Y1A04D6@ksr SUDHA 209Y1A04D Strongly

44 mce.ac.in SUMANTH REDDY [B.Tech IVsem |ECE 6 Yes Yes agree Agree agree 5|Good
209Y1A04E1@ksr TARIGONDA 209Y1A04E Strongly

45 mce.ac.in REDDIKALA B.Tech IVsem |ECE 1 Yes Yes agree Agree agree 5|Nothing
209v1A04E3@ksr [TATTEUTLA UFTIAUSE Strongly

46 mce.ac.in NITISH KUMAR B.Tech IVsem |ECE 3 Yes Yes Strongly agree |Agree agree 5|Nothing
209Y1AQ4E7@ksr THUNGA 209Y1A04E Strongly

a7 mce.ac.in KUSUMA B.Tech IVsem |ECE 7 Yes Yes agree Agree agree 5|very good
209Y1A04F1@ksr 209Y1A04F Strongly

48 mce.ac.in VAKA NANDINI B.Tech IVsem |ECE 1; Yes Yes agree Agree agree 5{very good
209Y1A04F5@ksr 209Y1A04F Strongly

49 mce.ac.in VEERAPURAM SWAPNA |B.Tech IVsem [ECE 5 Yes Yes Strongly agree |[Agree agree S|very good
209Y1AQ4F7 @ksr 209Y1A04F Strongly

50! mce.ac.in YAKASI BHARATH B.Tech IVsem |ECE 7 Yes Yes Strongly agree |Agree agree 5|nothing
209Y1A04F9@ksr |YELAMPALLE SAIKIRAN 209Y1A04F Strongly

51 mce.ac.in REDDY B.Tech IVsem |ECE 9 Yes Yes agree Agree agree 5|Good
219Y5A0402@ksr 219Y5A040 Strongly

52 mce.ac.in BODDU PALLAVI B.Tech IVsem |ECE 2 Yes Yes agree Agree agree 5|Good
219Y5A0403 @ksr 219Y5A040 Strongly

53 mce.ac.in BOGGULA PARIMALA B.Tech IVsem |ECE 3 Yes Yes agree Agree agree 5|nothing
219Y5A0405@ksr 219Y5A040 Strongly

54 mce.ac.in G KAVYA B.Tech IVsem [ECE 5 Yes Yes agree Agree agree 5|nothing
219Y5A0406@ksr |GANJI KUNTA MADHU 219Y5A040 Strongly

55 mce.ac.in KUMAR B.Tech IVsem |ECE 6 Yes Yes agree Agree agree 5|nothing
219Y5A0408@ksr 219Y5A040 Strongly

56 mce.ac.in GORLA MAINA B.Tech IVsem |ECE 8 Yes Yes agree Agree agree 5|Good

219Y5A0409@ksr [KARELLA 219Y5A040 Strongly

57 mce.ac.in RAGHAVENDRA) B.Tech IVsem [ECE 9 Yes Yes agree Agree agree 5|Good
219Y5A0411@ksr 219Y5A041 Strongly

58 mce.ac.in MEESALA MOUNIKA B.Tech IVsem [ECE 1 Yes Yes agree Agree agree 5|very good
219Y5A0412@ksr 219Y5A041 Strongly

59 mce.ac.in MUKKA MALLA SHIVA B.Tech IVsem [ECE 2 Yes Yes Strongly agree |Agree agree 5|very good
219Y5A0413@ksr 219Y5A041 Strongly

60 mce.ac.in PASUPULETI NAGENDRA [B.Tech IVsem |ECE 3 Yes Yes Strongly agree |Agree agree 5|nothing
219Y5A0414@ksr 219Y5A041 Strongly

61 mce.ac.in PATAN FARUQ KHAN B.Tech IVsem |ECE 4 Yes Yes agree Agree agree 5[no
219Y5A0415@ksr 219Y5A041 Strongly

62 mce.ac.in SANE ARUN KUMAR B.Tech IVsem |ECE 5 Yes Yes agree Agree agree 5|Nothing
219Y5A0416@ksr [SANGALA CHARAN 219Y5A041 Strongly

63 mce.ac.in KUMAR REDDY B.Tech IVsem ECE 6 Yes Yes agree Agree agree 4fno
219Y5A0417 @ksr [SHAIK MAHAMMAD 219Y5A041 Strongly

64 mce.ac.in SHARIF B.Tech IVsem |ECE 7 Yes Yes agree Agree agree 5|nothing
219Y5A0418@ksr 219Y5A041 Strongly

65 mce.ac.in VANDADI BABY B.Tech IVsem [ECE 8 Yes Yes agree Agree agree 5|Good

[r .
oordal

K.S.R-M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA-516003
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
VALUE ADDED/CERTIFICATE COURSE ON
C++ PROGRAMMING FROM 09/04/2022 TO 24/04/2022

AWARD LIST
S.No | Roll Number | Name of the Student Marks Obtained
1.
209Y1A0401 13
A. HARSHA VARDHAN
2. 209Y1A0402 12
AKKULAYAPALLE SIDDIQ
4 209Y1A0405 -
AYALURI SHASHIKALA
4, 16
209Y1A0409
BANDI KALYANI
> | 209v1A0412 Ltk
BANNE NARESH
6. 209Y1A0417 14
BOGEM SANGEETHA
7. 14
209Y1A0419
BOYA SUDHEER
8. 209Y1A0421 16
CHABUKSAWAR SHAIK ABDULLAH
9. 10
209Y1A0422
CHAKALI PRABHAKAR
’ 12
10 209Y1A0425
CHAMANCHI! VENKATA LOHITH
11. 209Y1A0427 12
CHAVVA RAJESHWARA REDDY
: 13
L 209Y1A0430
CHINNAKOTLA MADHAVI
13. 209Y1A0433 s
CHINTHA HARIPRIYA
: 09
14 179Y1A0437 DANDU SIVAIAH
15. 15
209Y1A0441
DEVAGANI SWETHA
16. 15
209Y1A0445
DUDEKULA JAYA CHANDRA
17 16
209Y1A0449
GAMPA VAMSI
18. 209Y1A0454 13
GODLAVETI SAI PRATHAP
19. 12
209Y1A0457
GORLA BHARGAVI
20. 209Y1A0461 0
GUDISENAPALLE HARI KRISHNA

21. 209Y1A0467 -
: KAMMARI ANITHA
= 209Y1A0470 e
KARROLLA GANESH
i 1
- 209Y1A0474 :
KOVVURU LAVANYA
. 14
24 209Y1A0478
LAKSHMIGARI POOJITHA
25. 16
209Y1A0482
MADDEPALLI SUJITHA RANI
26 209Y1A0485 S
MALLISETTY KRISHNA SAl GOUD
e 209Y1A0490 =
MEKALA GIRINATH REDDY
g 209Y1A0493 L
MURABOYANA RAJIV
2. 209Y1A0497 L
NAGURU INDRA KALYAN REDDY
30. 12
209Y1A04A0
NANDYALA SUBBARAYUDU
S1. 209Y1A04A3 14
NEELOLLA HARATHI
5
. 209Y1A04A8 i
PANDLA CHANDRA SEKHAR
L 209Y1A04B2 14
PENDEM USHA RANI
I 209Y1A04B6 15
PULLALAREVUA GIRINATH REDDY
33 209Y1A04C0 16
S ARSHIYA
26, 209Y1A04C2 10
SANA YASHWANTH
S 209Y1A04C5 08
SHAIK BEEBI AYESHA SIDDIKA
L 209Y1A04C8 12
SHAIK MOHAMMED FAIZAN
39. 209Y1A04D1 13
SHAIK SAHEEL
40. 209Y1A04D4 e
SINGANAMALA VENKATA SAI
ol 209Y1A04D6 13
SUDHA SUMANTH REDDY
42,
209Y1A04E1 1
TARIGONDA REDDIKALA
43. 209Y1A04E3 12

TATIGOTLA NITISH KUMAR REDDY

44,
209Y1A04E7 13
THUNGA KUSUMA
45.
5 209Y1ADAFL VAKA NANDINI 13
46.
6 209Y1A04F5 11
VEERAPURAM SWAPNA
e 209Y1A04F7 12
YAKASI BHARATH
co 209Y1A04F9 1
YELAMPALLE SAIKIRAN REDDY
49.
219Y5A0402 13
BODDU PALLAVI
50.
219Y5A0403 12
BOGGULA PARIMALA
5il..
219Y5A0405 e
G KAVYA
52.
2 219Y5A0406 I3
GANJI KUNTA MADHU KUMAR
33. 219Y5A0408 i
GORLA MAINA
4
2 219Y5A0409 3
KARELLA RAGHAVENDRA)
0 219Y5A0411 i
MEESALA MOUNIKA
56 11
219Y5A0412
MUKKA MALLA SHIVA
i 219Y5A0413 L
PASUPULETI NAGENDRA
58 12
219Y5A0414
PATAN FARUQ KHAN
4
2 219Y5A0415 I
SANE ARUN KUMAR
1
60 219Y5A0416 d
SANGALA CHARAN KUMAR REDDY
61 18
219Y5A0417
SHAIK MAHAMMAD SHARIF
62 219Y5A0418 L

VANDADI BABY

Coorélnato
o

r

o] i

Priggpsor & H.O.0D.
Popartment of E.C.E.
K.8.2.0. College of Enginesving
HADAPA - B16 083,

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA-516003
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
VALUE ADDED /CERTIFICATE COURSE ON
C++ PROGRAMMING FROM 09/04/2022 TO 24/04/2022

ASSESSMENT TEST
Roll Number: Name of the Student:
Time: 20 Min (Objective Questions) Max.Marks: 20

Note: Answer the following Questions and each question carries one mark.

1. Which of the following is used for implementing the late binding? []
a)Operator Functions
b)Virtual Functions
c¢)Constant Functions
d)All of above
2. Which one of the following cannot be used with the virtual keyword? []
a)Destructor
b)Member function
c¢)Constructor
d)None of the above
3. Which of the following statement is not true about C++? []
a)A class cannot have the private members
b)Members of a class are public by default
¢)A structure can have the member functions
d)All of the above
4. Which of the following is the correct syntax to add the header file in the C++ program?

[]
a)#include “userdefined.h”
b)#include<userdefined>
c)<include> “userdefined.h”
d)Both A & B
5. Which of the following statements is correct about the friend function in C++ programming
language? []

a)A friend function can access the private members of a class
b)A friend function is able to access private members of a class
¢)A friend function is able to access the public members of a class
d)All of the above
6. Which of the following statements is correct about the class? []
a)A class is an instance of its object
b)An object is the instance of the data type of that class
c)An object is an instance of its class
d)All of above
7. Which of the following can be used to create an abstract class in the C++ programming
language? []
a)By using the pure virtual function in the class
b)By declaring a virtual function in the base class

¢)By declaring the virtual keyword afterward, the class Declaration
d)None of the above
8. Which of the following can be considered as the members that can be inherited but not
accessible in any class? []
a)Protected
b)Public
c)Private
d)None of the above
9. Which of the following is the correct syntax to print the message in C++ language?
[]
a)Out <<“Hello world!;
b)cout <<“Hello world!”;
¢)Cout << Hello world! ;
d)None of the above
10. Which of the following can be considered as the correct syntax for declaring an array of
pointers of integers that has a size of 10 in C++? []
a)int *arr = new int*[10]
b)int *arr = new int[10];
c)int arr = new int[10];
d)int **arr = new int*[10];
11. Which one of the following statements correctly refers to the Delete and Delete[] in C++
programming language? []
a)The “Delete” is used for deleting the standard objects, while on the other hand, the
“Delete[]” is used to delete the pointer objects
b)The “Delete” is a type of keyword, whereas the “Delete[]” is a type of identifier
¢)The “Delete” is used for deleting a single standard object, whereas the “Delete[]” is used for
deleting an array of the multiple objects
d)Delete is syntactically correct although, if the Delete[] is used, it will obtain an error
12. Which of the following statement is correct about Virtual Inheritance? []
a)lt is a technique to ensure that a private member of a base class can be accessed
b)It is a C++ technique to avoid multiple copies of the base class into the derived or child
classes
o)lt is a technique to optimize the multiple inheritances
d)It is a technique to avoid the multiple inheritances of the classes
13. Elements of a one-dimensional array are numbered as 0,1,2,3,4,5, and so on; these numbers
are knownas []
a)Members of Array
b)Index values
c)Subscript of Array
d)Both 2 & 3
14. How many types of elements can an array store? []
a)Same types of elements
b)Only char types
¢)Char and int type
d)All of the above
15. Which of the following can be considered as the object of an array? []

a)Elements of the Array
b)Index of an array
c)Functions of the Array
d)All of the above
16. Which types of arrays are always considered as linear arrays? []
a)Multi-dimensional
b)Single-dimensional
c)All of above
d)None of the above
17. What did we call an array of the one-dimensional array? []
a)Multi-Dimensional array
b)Single Dimensional array
¢)2D Array (or 2-Dimensional array)
d)All of above
18. Which one of the following is the correct definition of the “is_array();” function in C++?
[]
a)lt checks that the specified array of single dimension or not
b)It checks that the array specified of multi-dimension or not
¢)It checks that the specified variable is of the array or not
d)All of above
19. In C++, for what purpose the “rank()” is used? []
a)lt returns the maximum number of elements that can be stored in the array
b)It returns the size of each dimension
¢)It returns the dimension of the specified array
d)None of the above
20. How many types of the array are there in the C++ programming language? []
a)In the C++ programming language, there are four types of arrays
b)In the C++ programming language, there are three types of arrays
¢)In the C++ programming language, there are two types of arrays
d)All of above

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA-516003
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
VALUE ADDED /CERTIFICATE COURSE ON
C++ PROGRAMMING FROM 09/04/2022 TO 24/04/2022
ASSESSMENT TEST
Roll Number: 9| ﬂy 543(0/_’;0 £ Name of the Student: V. R@, b %/

Time: 20 Min (Objective Questions) Max.Marks: 20
Note: Answer the following Questions and each question carries one mark.

1. Which of the following is used for implementing the late binding? [V
a)Operator Functions
b)Virtual Functions
c¢)Constant Functions
d)All of above
2. Which one of the following cannot be used with the virtual keyword?
a)Destructor
b)Member function
c¢)Constructor
d)None of the above
3. Which of the following statement is not true about C++?
a)A class cannot have the private members -
b)Members of a class are public by default
¢)A structure can have the member functions
d)All of the above
4. Which of the following is the correct syntax to add the header file in the C++ program?

a)#include “userdefined.h” /1/

b)#include<userdefined>
c)<include> “userdefined.h”
d)Both A & B
5. Which of the following statements is correct about the friend function in C++ programming_-
language? {/(j(ﬂlg/
a)A friend function can access the private members of a class
b)A friend function is able to access private members of a class
)A friend function is able to access the public members of a class
d)All of the above
6. Which of the following statements is correct about the class?
a)A class is an instance of its object
b)An object is the instance of the data type of that class
¢)An object is an instance of its class
d)All of above
7. Which of the following can be used to create an abstract class in the C++ programming
language? []
a)By using the pure virtual function in the class
b)By declaring a virtual function in the base class

|

ahale

@

—

=

¢)By declaring the virtual keyword afterward, the class Declaration
d)None of the above
8. Which of the following can be considered as the members that can be inherited but not
accessible in any class? []
a)Protected
b)Public
c)Private
d)None of the above
9. Which of the following is the correct syntax to print the message in C++ language?
e
a)Out <<*Hello world!;
b)cout <<*Hello world!”;
c¢)Cout << Hello world! ;
d)None of the above - .
10. Which of the following can be considered as the correct syntax for declaring an arra \
pointers of integers that has a size of 10 in C++? a
a)int *arr = new int*[10]
b)int *arr = new int[10];
c)int arr = new int[10];
d)int **arr = new int*[10];
11. Which one of the following statements correctly refers to the Delete and Delete[] in C++
programming language? 53 a5
a)The “Delete” is used for deleting the standard objects, while on the other hand, the
“Delete[]” is used to delete the pointer objects
b)The “Delete” is a type of keyword, whereas the “Delete[]” is a type of identifier
c¢)The “Delete” is used for deleting a single standard object, whereas the “Delete[]” is used for
deleting an array of the multiple objects
d)Delete is syntactically correct although, if the Delete[] is used, it will obtain an error

12. Which of the following statement is correct about Virtual Inheritance? ['b]

a)lt is a technique to ensure that a private member of a base class can be accessed

b)It is a C++ technique to avoid multiple copies of the base class into the derived or child .
classes

o)lt is a technique to optimize the multiple inheritances
d)It is a technique to avoid the multiple inheritances of the classes
13. Elements of a one-dimensional array are numbered as 0,1,2,3.4,5, and so on; these numbers
are knownas [sgaic]
a)Members of Array
b)Index values
c)Subscript of Array
d)Both2 & 3
14. How many types of elements can an array store? B0 <]
a)Same types of elements
b)Only char types
¢)Char and int type
d)All of the above
15. Which of the following can be considered as the object of an array?)]

a)Elements of the Array
b)Index of an array
c)Functions of the Array
d)All of the above
16. Which types of arrays are always considered as linear arrays?
a)Multi-dimensional
b)Single-dimensional
c)All of above
d)None of the above
17. What did we call an array of the one-dimensional array?
a)Multi-Dimensional array
b)Single Dimensional array
¢)2D Array (or 2-Dimensional array)
d)All of above

18. Which one of the following is the correct definition of the “is_array();” function in C++?

a)It checks that the specified array of single dimension or not
b)It checks that the array specified of multi-dimension or not
¢)It checks that the specified variable is of the array or not
d)All of above
19. In C++, for what purpose the “rank()” is used?
a)lt returns the maximum number of elements that can be stored in the array
b)lt returns the size of each dimension
¢)lt returns the dimension of the specified array
d)None of the above
20. How many types of the array are there in the C++ programming language?
a)In the C++ programming language, there are four types of arrays
b)In the C++ programming language, there are three types of arrays
¢)In the C++ programming language, there are two types of arrays
d)All of above

[C/]'

[9/1

-

/

s

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA-516003
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
VALUE ADDED /CERTIFICATE COURSE ON
C++ PROGRAMMING FROM 09/04/2022 TO 24/04/2022
ASSESSMENT TEST :
Roll Number: 9 (ﬂq [AoU Uq Name of the Student: 3- kalgany

Time: 20 Min (Objective Questions) Max.Marks: 20
Note: Answer the following Questions and each question carries one mark.

1. Which of the following is used for implementing the late binding? [3]
a)Operator Functions /
b)Virtual Functions
¢)Constant Functions
d)All of above]

2. Which one of the following cannot be used with the virtual keyword? [/QA/
a)Destructor
b)Member function
c¢)Constructor
d)None of the above

3. Which of the following statement is not true about C++? [%/
a)A class cannot have the private members
b)Members of a class are public by default
¢)A structure can have the member functions
d)All of the above

4. Which of the following is the correct syntax to add the header file in the C++ program?

[.

a)#include “userdefined.h” /@/J/

b)#include<userdefined>

c¢)<include> “userdefined.h”

d)Both A & B
5. Which of the following statements is correct about the friend function in C++ programming
language? [

a)A friend function can access the private members of a class
b)A friend function is able to access private members of a class
¢)A friend function is able to access the public members of a class

d)All of the above
6. Which of the following statements is correct about the class? ‘
a)A class is an instance of its object

b)An object is the instance of the data type of that class
c)An object is an instance of its class

d)All of above
7. Which of the following can be used to create an abstract class in the C++ programmin
language? [j/]

a)By using the pure virtual function in the class
b)By declaring a virtual function in the base class

¢)By declaring the virtual keyword afterward, the class Declaration
d)None of the above
8. Which of the following can be considered as the members that can be inherited but not

accessible in any class? e
a)Protected
b)Public /
c)Private
d)None of the above

9. Which of the following is the correct syntax to print the message in C++ language?

[M
a)Out <<*Hello world!;

b)cout <<“Hello world!”;
¢)Cout << Hello world! ;

d)None of the above =
10. Which of the following can be considered as the correct syntax for declaring an array o
pointers of integers that has a size of 10 in C++? []

a)int *arr = new int*[10]

b)int *arr = new int[10];

c)int arr = new int[10];

d)int **arr = new int*[10];
11. Which one of the following statements correctly refers to the Delete and Delete
programming language?

a)The “Delete” is used for deleting the standard objects, while on the other hand, the
“Delete[]” is used to delete the pointer objects

b)The “Delete” is a type of keyword, whereas the “Delete[]” is a type of identifier

¢)The “Delete” is used for deleting a single standard object, whereas the “Delete[]” is used for
deleting an array of the multiple objects

d)Delete is syntactically correct although, if the Delete[] is used, it will obtain an error
12. Which of the following statement is correct about Virtual Inheritance? [M

a)lt is a technique to ensure that a private member of a base class can be accessed

b)It is a C++ technique to avoid multiple copies of the base class into the derived or child
classes

oIt is a technique to optimize the multiple inheritances

d)lt is a technique to avoid the multiple inheritances of the classes

13. Elements of a one-dimensional array are numbered as 0,1,2,3,4,5, and so on; these ers
are known as []
a)Members of Array

b)Index values
¢)Subscript of Array
d)Both2 & 3
14. How many types of elements can an array store?]
a)Same types of elements
b)Only char types

¢)Char and int type .
d)All of the above
15. Which of the following can be considered as the object of an array? []

a)Elements of the Array
b)Index of an array
c)Functions of the Array
d)All of the above

16. Which types of arrays are always considered as linear arrays? [@ ;
a)Multi-dimensional /
b)Single-dimensional
c)All of above -
d)None of the above /

17. What did we call an array of the one-dimensional array? R iy

a)Multi-Dimensional array
b)Single Dimensional array
¢)2D Array (or 2-Dimensional array)
d)All of above
18. Which one of the following is the correct definition of the “is_array();” funct+?
[
a)lt checks that the specified array of single dimension or not
b)It checks that the array specified of multi-dimension or not
¢)It checks that the specified variable is of the array or not
d)All of above
19. In C++, for what purpose the “rank()” is used? [}%

a)lt returns the maximum number of elements that can be stored in the array

b)It returns the size of each dimension
¢)It returns the dimension of the specified array
d)None of the above
20. How many types of the array are there in the C++ programming language? [& £
a)In the C++ programming language, there are four types of arrays /
b)In the C++ programming language, there are three types of arrays
¢)In the C++ programming language, there are two types of arrays
d)All of above

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA-51600
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
VALUE ADDED /CERTIFICATE COURSE ON
C++ PROGRAMMING FROM 09/04/2022 TO 24/04/2022

7 ASSESSMENT TEST
Roll Number: [:i\f At YoY /Y5 4 o{ Name of the Student: (s QL RO
Time: 20 Min (Objective Questions) Max.Marks: 20

Note: Answer the following Questions and each question carries one mark.

1. Which of the following is used for implementing the late binding? [@/J/

a)Operator Functions
b)Virtual Functions
c)Constant Functions
d)All of above

2. Which one of the following cannot be used with the virtual keyword? [}'/]/7
a)Destructor

b)Member function
c)Constructor

d)None of the above '
3. Which of the following statement is not true about C++? [/

a)A class cannot have the private members
b)Members of a class are public by default
¢)A structure can have the member functions
d)All of the above

4. Which of the following is the correct syntax to add the header file in the C++ program?)
M
a)#include “userdefined.h”

b)#include<userdefined>
c)<include> “userdefined.h”

d)Both A & B
5. Which of the following statements is correct about the friend function in C++ programming
language? [1

a)A friend function can access the private members of a class
b)A friend function is able to access private members of a class
¢)A friend function is able to access the public members of a class

d)All of the above
6. Which of the following statements is correct about the class? [@]
a)A class is an instance of its object
b)An object is the instance of the data type of that class
¢)An object is an instance of its class
d)All of above
7. Which of the following can be used to create an abstract class in the C++ programming
language?
a)By using the pure virtual function in the class
b)By declaring a virtual function in the base class

¢)By declaring the virtual keyword afterward, the class Declaration
d)None of the above
8. Which of the following can be considered as the members that can be inherited but not

accessible in any class? [€
a)Protected
b)Public

c)Private
d)None of the above
. Which of the following is the correct syntax to print the message in C++ language?
[]

a)Out <<*Hello world!;

b)cout <<*Hello world!”;

¢)Cout << Hello world! ;

d)None of the above

10. Which of the following can be considered as the correct syntax for declaring an arragf/
pointers of integers that has a size of 10 in C++?

a)int *arr = new int*[10]

b)int *arr = new int[10];

c)int arr = new int[10];

d)int **arr = new int*[10];

11. Which one of the following statements correctly refers to the Delete and Delete[]

. Whi i in
programming language? [/5‘4]/

a)The “Delete” is used for deleting the standard objects, while on the other hand, the
“Delete[]” is used to delete the pointer objects

b)The “Delete” is a type of keyword, whereas the “Delete[]” is a type of identifier

c)The “Delete” is used for deleting a single standard object, whereas the “Delete[]” is used for
deleting an array of the multiple objects

d)Delete is syntactically correct although, if the Delete[] is used, it will obtain an error

12. Which of the following statement is correct about Virtual Inheritance? []
a)lt is a technique to ensure that a private member of a base class can be accessed

b)It is a C++ technique to avoid multiple copies of the base class into the derived or child

classes

¢)lt is a technique to optimize the multiple inheritances
d)It is a technique to avoid the multiple inheritances of the c]asses

13. Elements of a one-dimensional array are numbered as 0,1,2,3,4,5, and so on; thesg\nu IS
are known as []

a)Members of Array

b)Index values

c)Subscript of Array

d)Both 2 & 3

14. How many types of elements can an array store? [@
a)Same types of elements

b)Only char types

c¢)Char and int type

15. Which of the following can be considered as the object of an array?

d)All of the above /
: : ; ; ' [|

/'

a)Elements of the Array
b)Index of an array
¢)Functions of the Array
d)All of the above
16. Which types of arrays are always considered as linear arrays?
a)Multi-dimensional
b)Single-dimensional
c)All of above
d)None of the above
17. What did we call an array of the one-dimensional array?
a)Multi-Dimensional array
b)Single Dimensional array
¢)2D Array (or 2-Dimensional array)
d)All of above

18. Which one of the following is the correct definition of the “is_array();” function in C++?

a)lt checks that the specified array of single dimension or not
b)It checks that the array specified of multi-dimension or not
¢)It checks that the specified variable is of the array or not
d)All of above
19. In C++, for what purpose the “rank()” is used?
a)lt returns the maximum number of elements that can be stored in the array
b)lt returns the size of each dimension
o)t returns the dimension of the specified array
d)None of the above
20. How many types of the array are there in the C++ programming language?
a)In the C++ programming language, there are four types of arrays
b)In the C++ programming language, there are three types of arrays
¢)In the C++ programming language, there are two types of arrays
d)All of above

[@]

il

C++
Language

C++ Language

Table of contents
i 11 o] Pl o) i eTo] g T 1| e e e e S AR Tttt s o St e e ity L 3
BaSICS O T i o i i e Tt s aiaaahaTasinso s iime s an s e et s s e e S e B S 4
A A e H e L e e i T T 4
NakighlessDatailypese. el e e R s el i s s L e 8
EONSHENIS: S s s s T e R e G 14
) e o T L e o 18
BasiCinpUE/OUIDUL o e e tss e it s i e e S e L e 26
CONEEOL SEIUCEULES. c. oo crscrteisusssisssnsonasssenessussossusisnsisivssnssesnssssonssssssnsssssssssvsvsssesssvissvssipesssiassossiossssadocins 31
oY Tl v A U R e e it v i sl e i s et Sk e T eI et 31
el () Een e L n e e B Sl e T e 38
BN ARSI e o T et gl ettt L R e S G L IR s o B 44
(efof 13 el s o 1=) o e T Sl f o S R I 1) S0 o M e e 51
o e e T o e e e S Wt o S L e e 51
B e S e e R e A R N < T Sk LS S Lt e LG 58
P OINEELS sl it i s e T R S e e et R e e 60
DYNaAMIGIMEMONY, .o ssmern i s e e e T A e s e A L S e e Al
DatastEUGTURES tuosiiiestis v nbeor i s s ra T T s s e e e T e e S 74
Othe R D a ATy DES i sl mes it s e o P e T P T o e e S S L e e S 79
Oblecr CEenter PEOREMIMINE. ..t irssarmmssmesmimsi s s et s i e Ve s e T L ik 83
Sl ERrE 1) R b e e o e e e i R MR = oo A 15 1o e il e b0 T S o 83
Classes([l) i s ot e et W te s B2 i L i T e e e e s et) ey 92
Erie S D A e e e aIGE s e i i v iesn immimsis b mimsim s S b e e P e e i 97
B Y O D I S R e st edbnunanans s fenh s s b ST e s e B LR S 104
AdVanced O CeplS e e e e e L S 110
Templat eSS e e e e T 110
N AIMIESPACES v usv.tb oo smusa s sundanstss swvvs savs ss SV AR LRSS EE L S TS M e b e e 117
B S e i s e T e e e L R Sl e e 120
B S SRR]S s sy s L e e e SO s e il e e (b is (e 124
EreprecessondirectiVes i nisteaa i s s S e e i e s 130

C++ Language

C++ Standard Library.
Input/Output with

[e T T e T 135

C++ Language

Basics of C++

Structure of a program

Probably the best way to start learning a programming language is by writing a program. Therefore, here is our
first program:
/ rst pr Hello World!

int main ()

{
cout << "Hello World!"™;
return 0;

}

The first panel shows the source code for our first program. The second one shows the result of the program once
compiled and executed. The way to edit and compile a program depends on the compiler you are using. Depending
on whether it has a Development Interface or not and on its version. Consult the compilers section and the manual
or help included with your compiler if you have doubts on how to compile a C++ console program.

The previous program is the typical program that programmer apprentices write for the first time, and its result is
the printing on screen of the "Hello World!" sentence. It is one of the simplest programs that can be written in
C++, but it already contains the fundamental components that every C++ program has. We are going to look line
by line at the code we have just written:

// my first program in C++
This is a comment line. All lines beginning with two slash signs (//) are considered comments and do not
have any effect on the behavior of the program. The programmer can use them to include short
explanations or observations within the source code itself. In this case, the line is a brief description of
what our program is.

#include <iostream>
Lines beginning with a hash sign (#) are directives for the preprocessor. They are not regular code lines
with expressions but indications for the compiler's preprocessor. In this case the directive #include
<iostream> tells the preprocessor to include the iostream standard file. This specific file (iostream)
includes the declarations of the basic standard input-output library in C++, and it is included because its
functionality is going to be used later in the program.

using namespace std;
All the elements of the standard C++ library are declared within what is called a namespace, the
namespace with the name std. So in order to access its functionality we declare with this expression that
we will be using these entities. This line is very frequent in C++ programs that use the standard library,
and in fact it will be included in most of the source codes included in these tutorials.

int main ()
This line corresponds to the beginning of the definition of the main function. The main function is the point
by where all C++ programs start their execution, independently of its location within the source code. It
does not matter whether there are other functions with other names defined before or after it - the
instructions contained within this function's definition will always be the first ones to be executed in any
C++ program. For that same reason, it is essential that all C++ programs have a main function.

The word main is followed in the code by a pair of parentheses (()). That is because it is a function
declaration: In C++, what differentiates a function declaration from other types of expressions are these
parentheses that follow its name. Optionally, these parentheses may enclose a list of parameters within
them.

Right after these parentheses we can find the body of the main function enclosed in braces ({}). What is
contained within these braces is what the function does when it is executed.

C++ Language

cout << "Hello World!";

This line is a C++ statement. A statement is a simple or compound expression that can actually produce
some effect. In fact, this statement performs the only action that generates a visible effect in our first
program.

cout represents the standard output stream in C++, and the meaning of the entire statement is to insert
a sequence of characters (in this case the Hello World sequence of characters) into the standard output
stream (which usually is the screen).

cout is declared in the iostream standard file within the std namespace, so that's why we needed to

include that specific file and to declare that we were going to use this specific namespace earlier in our
code.

Notice that the statement ends with a semicolon character (;). This character is used to mark the end of
the statement and in fact it must be included at the end of all expression statements in all C++ programs
(one of the most common syntax errors is indeed to forget to include some semicolon after a statement).

return 0;
The return statement causes the main function to finish. return may be followed by a return code (in our
example is followed by the return code 0). A return code of O for the main function is generally interpreted

as the program worked as expected without any errors during its execution. This is the most usual way to
end a C++ console program.

You may have noticed that not all the lines of this program perform actions when the code is executed. There were
lines containing only comments (those beginning by //). There were lines with directives for the compiler's
preprocessor (those beginning by #). Then there were lines that began the declaration of a function (in this case,
the main function) and, finally lines with statements (like the insertion into cout), which were all included within
the block delimited by the braces ({}) of the main function.

The program has been structured in different lines in order to be more readable, but in C++, we do not have strict
rules on how to separate instructions in different lines. For example, instead of

int main ()

{
cout << " Hello World!";:
return 0;

}
We could have written:
int main () { cout << '"Hello Wprld!“; return 0; }
All in just one line and this would have had exactly the same meaning as the previous code.

In C++, the separation between statements is specified with an ending semicolon (;) at the end of each one, so
the separation in different code lines does not matter at all for this purpose. We can write many statements per
line or write a single statement that takes many code lines. The division of code in different lines serves only to
make it more legible and schematic for the humans that may read it.

Let us add an additional instruction to our first program:

C++ Language

Ct4 Hello World! I'm a C++ program

using n

int main ()

{

cout << "Hello World!
cout << "I'm a C++ program";
return 0;

In this case, we performed two insertions into cout in two different statements. Once again, the separation in
different lines of code has been done just to give greater readability to the program, since main could have been
perfectly valid defined this way:

"

int main () { cout << " Hello World! "; cout << " I'm a C++ program "; return 0; }
We were also free to divide the code into more lines if we considered it more convenient:

int main ()

{
cout <<

"Hello World!"™;
cout

<< "I'm a C++ program";
return 0;

}
And the result would again have been exactly the same as in the previous examples.

Preprocessor directives (those that begin by #) are out of this general rule since they are not statements. They are
lines read and processed by the preprocessor and do not produce any code by themselves. Preprocessor directives
must be specified in their own line and do not have to end with a semicolon (;).

Comments

Comments are parts of the source code disregarded by the compiler. They simply do nothing. Their purpose is only
to allow the programmer to insert notes or descriptions embedded within the source code.

C++ supports two ways to insert comments:

The first of them, known as line comment, discards everything from where the pair of slash signs (//) is found up
to the end of that same line. The second one, known as block comment, discards everything between the /*
characters and the first appearance of the */ characters, with the possibility of including more than one line.

We are going to add comments to our second program:

C++ Language

/ C++ Hello World! I'm a C++ program
#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World! ": // prints Hello
World!

cout << "I'm a C++ program"; // prints I'm a

s NrOOT

} : e .

If you include comments within the source code of your programs without using the comment characters
combinations //, /* or =/, the compiler will take them as if they were C++ expressions, most likely causing one or

several error messages when you compile it.

C++ Language

Variables. Data Types.

The usefulness of the "Hello World" programs shown in the previous section is quite questionable. We had to write
several lines of code, compile them, and then execute the resulting program just to obtain a simple sentence
written on the screen as result. It certainly would have been much faster to type the output sentence by ourselves.
However, programming is not limited only to printing simple texts on the screen. In order to go a little further on
and to become able to write programs that perform useful tasks that really save us work we need to introduce the
concept of variable.

Let us think that I ask you to retain the number 5 in your mental memory, and then I ask you to memorize also
the number 2 at the same time. You have just stored two different values in your memory. Now, if I ask you to add
1 to the first number I said, you should be retaining the numbers 6 (that is 5+1) and 2 in your memory. Values
that we could now for example subtract and obtain 4 as result.

The whole process that you have just done with your mental memory is a simile of what a computer can do with
two variables. The same process can be expressed in C++ with the following instruction set:

a=>5;
b = 2;
a=a+ 1;

result = a - b;

Obviously, this is a very simple example since we have only used two small integer values, but consider that your
computer can store millions of numbers like these at the same time and conduct sophisticated mathematical
operations with them.

Therefore, we can define a variable as a portion of memory to store a determined value.

Each variable needs an identifier that distinguishes it from the others, for example, in the previous code the
variable identifiers were a, b and result, but we could have called the variables any names we wanted to invent,
as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or underscore characters (_). Neither spaces nor
punctuation marks or symbols can be part of an identifier. Only letters, digits and single underscore characters are
valid. In addition, variable identifiers always have to begin with a letter. They can also begin with an underline
character (_), but in some cases these may be reserved for compiler specific keywords or external identifiers, as
well as identifiers containing two successive underscore characters anywhere. In no case they can begin with a
digit.

Another rule that you have to consider when inventing your own identifiers is that they cannot match any keyword
of the C++ language nor your compiler's specific ones, which are reserved keywords. The standard reserved
keywords are:

asm, auto, bool, break, case, catch, char, class, const, const_cast, continue, default, delete,
do, double, dynamic_cast, else, enum, explicit, export, extern, false, float, for, friend, goto,
if, inline, int, long, mutable, namespace, new, operator, private, protected, public, register,
reinterpret_cast, return, short, signed, sizeof, static, static_cast, struct, switch, template,
this, throw, true, try, typedef, typeid, typename, union, unsigned, using, virtual, void,
volatile, wchar_t, while

Additionally, alternative representations for some operators cannot be used as identifiers since they are reserved
words under some circumstances:

and, and_eq, bitand, bitor, compl, not, not eq, or, or_eq, xor, X0r_eq

C++ Language

Your compiler may also include some additional specific reserved keywords.

Very important: The C++ language is a "case sensitive” language. That means that an identifier written in capital
letters is not equivalent to another one with the same name but written in small letters. Thus, for example, the
RESULT variable is not the same as the result variable or the result variable. These are three different variable
identifiers.

Fundamental data types

When programming, we store the variables in our computer's memory, but the computer has to know what kind of
data we want to store in them, since it is not going to occupy the same amount of memory to store a simple
number than to store a single letter or a large number, and they are not going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the minimum amount of memory that we can
manage in C++. A byte can store a relatively small amount of data: one single character or a small integer
(generally an integer between 0 and 255). In addition, the computer can manipulate more complex data types that
come from grouping several bytes, such as long numbers or non-integer numbers.

Next you have a summary of the basic fundamental data types in C++, as well as the range of values that can be
represented with each one:

Name Description Size* Range¥*

signed: -128 to 127

char Character or small integer. 1byte unsigned: O to 255
short int signed: -32768 to 32767
(short) Short Integer. 2bytes unsigned: 0 to 65535

signed: -2147483648 to
int Integer. 4bytes 2147483647
unsigned: 0 to 4294967295

signed: -2147483648 to
leng int (long) |Long integer. 4bytes 2147483647
unsigned: 0 to 4294967295

Boolean value. It can take one of two values: true

bool S TAlS 1lbyte true or false

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

long double Long double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)
: 2or4 ;

wchar t Wide character. bytes 1 wide character

* The values of the columns Size and Range depend on the system the program is compiled for. The values
shown above are those found on most 32-bit systems. But for other systems, the general specification is that int
has the natural size suggested by the system architecture (one "word") and the four integer types char, short,
int and long must each one be at least as large as the one preceding it, with char being always 1 byte in size.
The same applies to the floating point types float, double and long double, where each one must provide at
least as much precision as the preceding one.

Declaration of variables

In order to use a variable in C++, we must first declare it specifying which data type we want it to be. The syntax
to declare a new variable is to write the specifier of the desired data type (like int, bool, float...) followed by a valid
variable identifier. For example:

C++ Language

int a;
float mynumber;

These are two valid declarations of variables. The first one declares a variable of type int with the identifier a. The
second one declares a variable of type flcat with the identifier mynumber. Once declared, the variables a and
mynumber can be used within the rest of their scope in the program.

If you are going to declare more than one variable of the same type, you can declare all of them in a single
statement by separating their identifiers with commas. For example:

Hntaay: b
This declares three variables (z, b and c), all of them of type int, and has exactly the same meaning as:

int a;
int b;
1543 kel

The integer data types char, short, long and int can be either signed or unsigned depending on the range of
numbers needed to be represented. Signed types can represent both positive and negative values, whereas
unsigned types can only represent positive values (and zero). This can be specified by using either the specifier
signed or the specifier unsigned before the type name. For example:

unsigned short int NumberOfSisters;
signed int MyAccountBalance;

By default, if we do not specify either signed or unsigned most compiler settings will assume the type to be
signed, therefore instead of the second declaration above we could have written:

int MyAccountBalance;

with exactly the same meaning (with or without the keyword signed)

An exception to this general rule is the char type, which exists by itself and is considered a different fundamental
data type from signed char and unsigned char, thought to store characters. You should use either signed or
unsigned if you intend to store numerical values in a char-sized variable.

short and long can be used alone as type specifiers. In this case, they refer to their respective integer
fundamental types: short is equivalent to short int and long is equivalent to long int. The following two
variable declarations are equivalent:

short Year;
short int Year;

Finally, signed and unsigned may also be used as standalone type specifiers, meaning the same as signed int
and unsigned int respectively. The following two declarations are equivalent:

unsigned NextYear;
unsigned int NextYear;

To see what variable declarations look like in action within a program, we are going to see the C++ code of the
example about your mental memory proposed at the beginning of this section:

10

C++ Language

#include t
using namespac
int main ()

{

int: a,; b:
int result;
[/ process:

'5:

a =
b=l
a=a+ 1;

result = a - b;

cout << result;
[/ terminate the program:

return 0;

Do not worry if something else than the variable declarations themselves looks a bit strange to you. You will see
the rest in detail in coming sections.

Scope of variables

All the variables that we intend to use in a program must have been declared with its type specifier in an earlier
point in the code, like we did in the previous code at the beginning of the body of the function main when we
declared that a, b, and result were of type int.

A variable can be either of global or local scope. A global variable is a variable declared in the main body of the
source code, outside all functions, while a local variable is one declared within the body of a function or a block.

#include <iostream>
using namespace std;

int Integexr;

char aCharaocter;

char string [20];
unsigned int Humber0fSons;

Clohal wariahles

int main ()

1
unsigned short Age; o
float AHumber , AnotherOne: Local variables

oout << "Entex your age:"
cin >> Age; Instructions

Global variables can be referred from anywhere in the code, even inside functions, whenever it is after its
declaration.

11

C++ Language

The scope of local variables is limited to the block enclosed in braces ({}) where they are declared. For example, if
they are declared at the beginning of the body of a function (like in function main) their scope is between its

declaration point and the end of that function. In the example above, this means that if another function existed in
addition to main, the local variables declared in main could not be accessed from the other function and vice versa.

Initialization of variables

When declaring a regular local variable, its value is by default undetermined. But you may want a variable to store
a concrete value at the same moment that it is declared. In order to do that, you can initialize the variable. There
are two ways to do this in C++:

The first one, known as c-like, is done by appending an equal sign followed by the value to which the variable will
be initialized:

type identifier = initial value ;

For example, if we want to declare an int variable called a initialized with a value of 0 at the moment in which it is
declared, we could write:

The other way to initialize variables, known as constructor initialization, is done by enclosing the initial value
between parentheses (()):

type identifier (initial_value) ;
For example:
int a (0):
Both ways of initializing variables are valid and equivalent in C++.

#include <iostream>

using namespace std;

aii=ast- 33
result = a - b;
cout << result;

return 0;

}

Introduction to strings

Variables that can store non-numerical values that are longer than one single character are known as strings.

The C++ language library provides support for strings through the standard string class. This is not a
fundamental type, but it behaves in a similar way as fundamental types do in its most basic usage.

12

C++ Language

A first difference with fundamental data types is that in order to declare and use objects (variables) of this type we
need to include an additional header file in our source code: <string> and have access to the std namespace
(which we already had in all our previous programs thanks to the using namespace statement).

fep By

This is a string

#include <iostream>
#include <string>
using namespace std;

int main ()

{
string mystring = "This is a string";
cout << mystring:
return 0;

As you may see in the previous example, strings can be initialized with any valid string literal just like numerical
type variables can be initialized to any valid numerical literal. Both initialization formats are valid with strings:

string mystring =
string mystring ("

Strings can also perform all the other basic operations that fundamental data types can, like being declared without
an initial value and being assigned values during execution:

[/ my £ t string This is the initial string content
#include <iostream> This is a different string content
#include <string>

using namespace std;

int main ()

{
string mystring;
mystring = "This is the initial string content";
cout << mystring << endl;
mystring = "This is a different string content”;
cout << mystring << endl;
return 0;

For more details on C++ strings, you can have a look at the string class reference.

15

C++ Language

Constants

Constants are expressions with a fixed value.

Literals

Literals are used to express particular values within the source code of a program. We have already used these
previously to give concrete values to variables or to express messages we wanted our programs to print out, for
example, when we wrote:

the s in this piece of code was a literal constant.

Literal constants can be divided in Integer Numerals, Floating-Point Numerals, Characters, Strings and Boolean .
Values.

Integer Numerals

1776
707
-273

They are numerical constants that identify integer decimal values. Notice that to express a numerical constant we
do not have to write quotes (") nor any special character. There is no doubt that it is a constant: whenever we
write 1776 in a program, we will be referring to the value 1776.

In addition to decimal numbers (those that all of us are used to use every day) C++ allows the use as literal
constants of octal numbers (base 8) and hexadecimal numbers (base 16). If we want to express an octal number
we have to precede it with a 0 (zero character). And in order to express a hexadecimal number we have to precede
it with the characters 0x (zero, x). For example, the following literal constants are all equivalent to each other:

75
0113 octa
Ox4b // hezadecimal

All of these represent the same number: 75 (seventy-five) expressed as a base-10 numeral, octal numeral and
hexadecimal numeral, respectively.

Literal constants, like variables, are considered to have a specific data type. By default, integer literals are of type
int. However, we can force them to either be unsigned by appending the u character to it, or long by appending 1:

75 /[int
75u // unsigned int
751 / long

75ul

In both cases, the suffix can be specified using either upper or lowercase letters.

Floating Point Numbers

They express numbers with decimals and/or exponents. They can include either a decimal point, an e character
(that expresses "by ten at the Xth height", where X is an integer value that follows the e character), or both a
decimal point and an e character:

14

C++ Language

3.14159 ©// 3.14159
6.02e23. . //-6.0% 21023
1.6e-19 // 1.6 x 10%-19
3.0 £ 3

These are four valid numbers with decimals expressed in C++. The first number is PI, the second one is the
number of Avogadro, the third is the electric charge of an electron (an extremely small number) -all of them
approximated- and the last one is the number three expressed as a floating-point numeric literal.

The default type for floating point literals is double. If you explicitly want to express a float or long double
numerical literal, you can use the £ or 1 suffixes respectively:

3.14159L // lcong double
6.02e23f // float

Any of the letters that can be part of a floating-point numerical constant (e, £, 1) can be written using either lower
or uppercase letters without any difference in their meanings.

Character and string literals
There also exist non-numerical constants, like:

o
7

e

P

"Hello world"
"How do you do?"

The first two expressions represent single character constants, and the following two represent string literals
composed of several characters. Notice that to represent a single character we enclose it between single quotes (')
and to express a string (which generally consists of more than one character) we enclose it between double quotes

(e

When writing both single character and string literals, it is necessary to put the quotation marks surrounding them
to distinguish them from possible variable identifiers or reserved keywords. Notice the difference between these
two expressions:

« alone would refer to a variable whose identifier is %, whereas 'x' (enclosed within single quotation marks) would
refer to the character constant 'x'.

Character and string literals have certain peculiarities, like the escape codes. These are special characters that are
difficult or impossible to express otherwise in the source code of a program, like newline (\n) or tab (\t). All of
them are preceded by a backslash (\). Here you have a list of some of such escape codes:

15

C++ Language

\n[newline

\r|carriage return

\t|tab

\v|vertical tab

\b|backspace

\f|form feed (page feed)

\a|alert (beep)

\'|single quote (')

\"|double quote (")

\?|question mark (?)

\\|backslash (\)

For example:

Additionally, you can express any character by its numerical ASCII code by writing a backslash character (\)
followed by the ASCII code expressed as an octal (base-8) or hexadecimal (base-16) number. In the first case
(octal) the digits must immediately follow the backslash (for example \23 or \40), in the second case
(hexadecimal), an = character must be written before the digits themselves (for example \x20 or \x42).

String literals can extend to more than a single line of code by putting a backslash sign (\) at the end of each
unfinished line.

You can also concatenate several string constants separating them by one or several blank spaces, tabulators,
newline or any other valid blank character:

"this forms! "a single! "string"

Finally, if we want the string literal to be explicitly made of wide characters (wchar_t), instead of narrow characters
(char), we can precede the constant with the L prefix:

L"This is a wide character string"
Wide characters are used mainly to represent non-English or exotic character sets.
Boolean literals

There are only two valid Boolean values: true and false. These can be expressed in C++ as values of type bool by
using the Boolean literals true and false.

Defined constants (#define)

You can define your own names for constants that you use very often without having to resort to memory-
consuming variables, simply by using the #define preprocessor directive. Its format is:

C++ Language

#define identifier value

For example:

This defines two new constants: PI and NEWLINE. Once they are defined, you can use them in the rest of the code
as if they were any other regular constant, for example:

1Ce 31.4158

defined constants: calculate circumferen

#include <iostr

using namespac

o H
w
o H
o3

f#define PI 3

#define NEWLINE

int main ()

{
double r=5.0; // radius
double circle;

circle = 2 * PI * r;
couti << elrele;s
cout << NEWLINE;

return 0;

In fact the only thing that the compiler preprocessor does when it encounters #define directives is to literally
replace any occurrence of their identifier (in the previous example, these were p1 and NEWLINE) by the code to
which they have been defined (3.14159 and '\n' respectively).

The #define directive is not a C++ statement but a directive for the preprocessor; therefore it assumes the entire
line as the directive and does not require a semicolon (;) at its end. If you append a semicolon character (;) at the
end, it will also be appended in all occurrences within the body of the program that the preprocessor replaces.

Declared constants (const)

With the const prefix you can declare constants with a specific type in the same way as you would do with a
variable:

const int pathwidth = 100;
const char tabulator = '\t';

Here, pathwidth and tabulator are two typed constants. They are treated just like regular variables except that
their values cannot be modified after their definition.

17

C++ Language

Operators

Once we know of the existence of variables and constants, we can begin to operate with them. For that purpose,
C++ integrates operators. Unlike other languages whose operators are mainly keywords, operators in C++ are
mostly made of signs that are not part of the alphabet but are available in all keyboards. This makes C++ code
shorter and more international, since it relies less on English words, but requires a little of learning effort in the
beginning.

You do not have to memorize all the content of this page. Most details are only provided to serve as a later
reference in case you need it.

Assignment (=)

The assignment operator assigns a value to a variable.

a-= 5 'I'

This statement assigns the integer value 5 to the variable a. The part at the left of the assignment operator (=) is
known as the /value (left value) and the right one as the rvalue (right value). The Ivalue has to be a variable
whereas the rvalue can be either a constant, a variable, the result of an operation or any combination of these.
The most important rule when assigning is the right-to-left rule: The assignment operation always takes place from
right to left, and never the other way:

a = b;

This statement assigns to variable a (the Ivalue) the value contained in variable b (the rvalue). The value that was
stored until this moment in a is not considered at all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of b to a at the moment of the assignment operation. Therefore
a later change of b will not affect the new value of a.

For example, let us have a look at the following code - I have included the evolution of the content stored in the
variables as comments:

assignment operator a:4 b:7

int main ()
{
b:

-
=]
ot
[

-
N O
~

owp o
mwnn
~ oo

cont<< tazl
cout << ay;
contaaca=hr
cout << b;

return 0;

This code will give us as result that the value contained in 2 is 4 and the one contained in b is 7. Notice how a was
not affected by the final modification of b, even though we declared a = b earlier (that is because of the right-to-
left rule).

C++ Language

A property that C++ has over other programming languages is that the assignment operation can be used as the
rvalue (or part of an rvalue) for another assignment operation. For example:

is equivalent to:

52
2i D

]
nn

that means: first assign 5 to variable b and then assign to a the value 2 plus the result of the previous assignment
of b (i.e. 5), leaving a with a final value of 7.

The following expression is also valid in C++:

It assigns 5 to the all the three variables: a, b and c.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are:
+ |addition

- |subtraction
* Imultiplication
/ |division
%|modulo

Operations of addition, subtraction, multiplication and division literally correspond with their respective
mathematical operators. The only one that you might not be so used to see is modulo; whose operator is the
percentage sign (%). Modulo is the operation that gives the remainder of a division of two values. For example, if
we write:

a=11 % 3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11 between 3.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=,
Az, |=)
T

When we want to modify the value of a variable by performing an operation on the value currently stored in that
variable we can use compound assignment operators:

expression is equivalent to
value += increase; |value = value + increase;
a -= 5; a=a-5;
a /= Db; a=a/ b;
price *= units + 1l;|price = price * (units + 1);

and the same for all other operators. For example:

19

C++ Language

#include <iostream>

using namespace std;

int main ()
{
int a, b=3;
a = b;
a+=2; // equivalent to a=at+2
cout << a;
return 0;

Increase and decrease (++, --)

Shortening even more some expressions, the increase operator (++) and the decrease operator (--) increase or
reduce by one the value stored in a variable. They are equivalent to +=1 and to -=1, respectively. Thus:

e

c+=1;

c=c+l1;

are all equivalent in its functionality: the three of them increase by one the value of c.

In the early C compilers, the three previous expressions probably produced different executable code depending on
which one was used. Nowadays, this type of code optimization is generally done automatically by the compiler,
thus the three expressions should produce exactly the same executable code.

A characteristic of this operator is that it can be used both as a prefix and as a suffix. That means that it can be
written either before the variable identifier (++a) or after it (a++). Although in simple expressions like a++ or ++a
both have exactly the same meaning, in other expressions in which the result of the increase or decrease operation
is evaluated as a value in an outer expression they may have an important difference in their meaning: In the case
that the increase operator is used as a prefix (++a) the value is increased before the result of the expression is
evaluated and therefore the increased value is considered in the outer expression; in case that it is used as a suffix
(a++) the value stored in a is increased after being evaluated and therefore the value stored before the increase
operation is evaluated in the outer expression. Notice the difference:

Example 1 Example 2
B=3; B=3;
A=++B; A=B++;
// A contains 4, B contains 4|// A contains 3, B contains 4

In Example 1, B is increased before its value is copied to 2. While in Example 2, the value of & is copied to & and
then B is increased.

Relational and equality operators (==, I=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality operators. The
result of a relational operation is a Boolean value that can only be true or false, according to its Boolean result.

We may want to compare two expressions, for example, to know if they are equal or if one is greater than the
other is. Here is a list of the relational and equality operators that can be used in C++:

20

C++ Language

Equal to

Not equal to

Greater than

Less than

Greater than or equal to
Less than or equal to

"

AlVIA|V
]

Here there are some examples:

(7 == 5)
(5:>.:4)
{3 1= 2)
(6 >= 6)
{5:<:5)

Of course, instead of using only numeric constants, we can use any valid expression, including variables. Suppose
that a=2, b=3 and c=6,

(a == 5) /1

(a*b >= c) i/ true
(b+t4 > a*c) // 2
((b=2) == a) //

Be careful! The operator = (one equal sign) is not the same as the operator == (two equal signs), the first one is an
assignment operator (assigns the value at its right to the variable at its left) and the other one (==) is the equality
operator that compares whether both expressions in the two sides of it are equal to each other. Thus, in the last
expression ((b=2) == a), we first assigned the value 2 tob and then we compared it to a, that also stores the
value 2, so the result of the operation is true.

Logical operators (!, &&, ||)

The Operator ! is the C++ operator to perform the Boolean operation NOT, it has only one operand, located at its
right, and the only thing that it does is to inverse the value of it, producing false if its operand is true and true if its
operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. For example:

1 (5 == 5) e i 1h 5:imw 5 true
1(6 <= 4) alse

ltrue L/

lfalse /s

The logical operators &s and | | are used when evaluating two expressions to obtain a single relational result. The
operator && corresponds with Boolean logical operation AND. This operation results true if both its two operands
are true, and false otherwise. The following panel shows the result of operator s& evaluating the expression a &&
b:

&& OPERATOR

a b la&&b
true |true [true
true |false(false
false|true |false
false|falselfalse

The operator || corresponds with Boolean logical operation OR. This operation results true if either one of its two
operands is true, thus being false only when both operands are false themselves. Here are the possible results of a
(M o

21

C++ Language

|| OPERATOR

a|bilal|lb
true |true |true
true |falsetrue
falseltrue |true
false|falselfalse

For example:

((5 ==05) && (3 >6))
(ESEEmn0EE (3> 1615

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that expression is true and a different one if
the expression is evaluated as false. Its format is:

condition ? resultl : result2

If condition is true the expression will return resultl, if it is not it will return result2.

7==5 2 4 : 3
7==54+2 ? 4 : 3
53 2 a:b
a>» ? a : b

s A e

#include <ios

t
using namespace std;

int main ()

{

In this example a was 2 and b was 7, so the expression being evaluated (a>b) was not true, thus the first value
specified after the question mark was discarded in favor of the second value (the one after the colon) which was b,
with a value of 7.

Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are included where only one expression

is expected. When the set of expressions has to be evaluated for a value, only the rightmost expression is
considered.

For example, the following code:

a = (b=3, b+2);

C++ Language

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end, variable a would contain the
value 5 while variable b would contain value 3.

Bitwise Operators (&, |, , ~, <<, >>))

Bitwise operators modify variables considering the bit patterns that represent the values they store.

operatorlasm equivalent description

& AND Bitwise AND

| OR Bitwise Inclusive OR

& XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)
<< SHL Shift Left

b 5 SHR Shift Right

Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another. There are several ways to do this
in C++. The simplest one, which has been inherited from the C language, is to precede the expression to be
converted by the new type enclosed between parentheses (()):

el i

fleocat £ = 3.14:

e I

The previous code converts the float number 3.14 to an integer value (3), the remainder is lost. Here, the
typecasting operator was (int). Another way to do the same thing in C++ is using the functional notation:
preceding the expression to be converted by the type and enclosing the expression between parentheses:

A= ant @ty
Both ways of type casting are valid in C++.
sizeof()

This operator accepts one parameter, which can be either a type or a variable itself and returns the size in bytes of
that type or object:
a = sizeof (char):;

This will assign the value 1 to a because char is a one-byte long type.
The value returned by sizeof is a constant, so it is always determined before program execution.

Other operators

Later in these tutorials, we will see a few more operators, like the ones referring to pointers or the specifics for
object-oriented programming. Each one is treated in its respective section.

Precedence of operators

When writing complex expressions with several operands, we may have some doubts about which operand is
evaluated first and which later. For example, in this expression:

au=nS e 0

23

we may doubt if it really means:

()
nn

B (g 22) / with a S
(5 +7) & 2 / with-a res

C++ Language

The correct answer is the first of the two expressions, with a result of 6. There is an established order with the
priority of each operator, and not only the arithmetic ones (those whose preference come from mathematics) but
for all the operators which can appear in C++. From greatest to lowest priority, the priority order is as follows:

Level Operator Description Grouping
1 rone Left-to-
P right
2 (). [} = =2 #+ —=idynamic cast static cast ti Left-to-
reinterpret_cast const_cast typeid postix right
++ —— ~ | sizeof new delete unary (prefix)
3 e indirection and reference Right-to-
(pointers) left
5 unary sign operator
i Right-to-
t
4 (type) type casting left
; Left-to-
* =k o -
5 > pointer-to-member right
3 = Bl Left-to-
6 /% multiplicative right
| 2 additive Sl
right
. Left-to-
8 << >> shift right
: Left-to-
e e
9 <= relational right
! Left-to-
===
10 equality ight
e Left-to-
11 & bitwise AND right
& gt Left-to-
12 bitwise XOR right
S Left-to-
13 I bitwise OR right
: Left-to-
14 |s& logical AND Sl
2 Left-to-
15 I logical OR right
" Right-to-
]
16 ? conditional left
ety W . Right-to-
= *= [= §= 4= -= = = g= A= |=
17 / + >>= <<= & assignment left
Left-to-
18 I comma right

Grouping defines the precedence order in which operators are evaluated in the case that there are several
operators of the same level in an expression.

All these precedence levels for operators can be manipulated or become more legible by removing possible
ambiguities using parentheses signs (and), as in this example:

24

C++ Language

might be written either as:

al=5 4 (T3 . 2);

or

(5 7)) % .2

b
I

depending on the operation that we want to perform.

So if you want to write complicated expressions and you are not completely sure of the precedence levels, always
include parentheses. It will also become a code easier to read.

25

C++ Language

Basic Input/Output

Until now, the example programs of previous sections provided very little interaction with the user, if any at all.
Using the standard input and output library, we will be able to interact with the user by printing messages on the
screen and getting the user's input from the keyboard.

C++ uses a convenient abstraction called streams to perform input and output operations in sequential media such
as the screen or the keyboard. A stream is an object where a program can either insert or extract characters
to/from it. We do not really need to care about many specifications about the physical media associated with the
stream - we only need to know it will accept or provide characters sequentially.

The standard C++ library includes the header file iostream, where the standard input and output stream objects
are declared.

Standard Output (cout)

By default, the standard output of a program is the screen, and the C++ stream object defined to access it is cout.

cout is used in conjunction with the insertion operator, which is written as << (two "less than" signs).

cout << "Output sentence”;
cout << 120;
cout << x;

The << operator inserts the data that follows it into the stream preceding it. In the examples above it inserted the
constant string output sentence, the numerical constant 120 and variable x into the standard output stream cout.
Notice that the sentence in the first instruction is enclosed between double quotes () because it is a constant
string of characters. Whenever we want to use constant strings of characters we must enclose them between
double quotes (") so that they can be clearly distinguished from variable names. For example, these two sentences
have very different results:

cout << "Hello"; prints Hel
cout << Hello; / prints

The insertion operator (<<) may be used more than once in a single statement:
cout << "Hello, " << "I am " << "a C++ statement";

This last statement would print the message Hello, I am a C++ statement on the screen. The utility of repeating
the insertion operator (<<) is demonstrated when we want to print out a combination of variables and constants or
more than one variable:

cout << "Hello, I am " << age << " years old and my zipcode is " << zipcode:
: g } y zig P

If we assume the age variable to contain the value 24 and the zipcode variable to contain 90064 the output of the
previous statement would be:

Hello, I am 24 years old and my zipcode is 90064

It is important to notice that cout does not add a line break after its output unless we explicitly indicate it,
therefore, the following statements:

26 s ot harase e St SR o

C++ Language

will be shown on the screen one following the other without any line break between them:

This is a sentence.This is another sentence.

even though we had written them in two different insertions into cout. In order to perform a line break on the
output we must explicitly insert a new-line character into cout. In C++ a new-line character can be specified as \n
(backslash, n):

cout << "First sentence.\n ";
cout << "Second sentence.\nThird sentence.";

This produces the following output:

First sentence.
Second sentence.
Third sentence.

Additionally, to add a new-line, you may also use the endl manipulator. For example:

cout- << "L
cout << "S

cond

[K

would print out:

First sentence.
Second sentence.

The end1l manipulator produces a newline character, exactly as the insertion of '\n’ does, but it also has an
additional behavior when it is used with buffered streams: the buffer is flushed. Anyway, cout will be an
unbuffered stream in most cases, so you can generally use both the \n escape character and the endl manipulator
in order to specify a new line without any difference in its behavior.

Standard Input (cin).

The standard input device is usually the keyboard. Handling the standard input in C++ is done by applying the
overloaded operator of extraction (>>) on the cin stream. The operator must be followed by the variable that will
store the data that is going to be extracted from the stream. For example:

int age;

cin >> age;

The first statement declares a variable of type int called age, and the second one waits for an input from cin (the
keyboard) in order to store it in this integer variable.

cin can only process the input from the keyboard once the RETURN key has been pressed. Therefore, even if you
request a single character, the extraction from cin will not process the input until the user presses RETURN after
the character has been introduced.

You must always consider the type of the variable that you are using as a container with cin extractions. If you
request an integer you will get an integer, if you request a character you will get a character and if you request a
string of characters you will get a string of characters.

27

C++ Language

Please enter an integer value: 702
The value you entered is 702 and its double is
1404.

int main ()
{
il gy ot b
cout << "Please enter an integer

5 N3 T
lues ;

]

cin >> 17

cout << "The wva
cout << " and
return 0;

Wenceetis
BESEIS I SGd YD Sde 0 Nt

0
[
ot b=
0w =

The user of a program may be one of the factors that generate errors even in the simplest programs that use cin
(like the one we have just seen). Since if you request an integer value and the user introduces a name (which
generally is a string of characters), the result may cause your program to misoperate since it is not what we were
expecting from the user. So when you use the data input provided by cin extractions you will have to trust that
the user of your program will be cooperative and that he/she will not introduce his/her name or something similar
when an integer value is requested. A little ahead, when we see the stringstream class we will see a possible
solution for the errors that can be caused by this type of user input.

You can also use cin to request more than one datum input from the user:

cini>>Eaz >k
is equivalent to:

cin >>"aj
cin >> b;

In both cases the user must give two data, one for variable a and another one for variable b that may be separated
by any valid blank separator: a space, a tab character or a newline.

cin and strings

We can use cin to get strings with the extraction operator (>>) as we do with fundamental data type variables:
cin >> mystring;

However, as it has been said, cin extraction stops reading as soon as if finds any blank space character, so in this
case we will be able to get just one word for each extraction. This behavior may or may not be what we want; for
example if we want to get a sentence from the user, this extraction operation would not be useful.

In order to get entire lines, we can use the function getline, which is the more recommendable way to get user
input with cin:

28 2l e S o Lo s

C++ Language

What's your name? Juan SouliA~A;Ak
Hello Juan SouliB~A;Als.

#include <string> What is your favorite team? The Isotopes
using namespace std: I like The Isotopes too!

int main ()
{
string mystr;
cout << "What's your name? ";
getline (cin, mystr):;
cout << "Hello " << mystr << ".\n";
cout << "What is your favorite team? ";
getline (cin, mystr);
cout << UT Like M o< omystr <<t it ogtAn !l
return 0;

Notice how in both calls to getline we used the same string identifier (mystr). What the program does in the
second call is simply to replace the previous content by the new one that is introduced.

stringstream

The standard header file <sstream> defines a class called stringstream that allows a string-based object to be
treated as a stream. This way we can perform extraction or insertion operations from/to strings, which is especially
useful to convert strings to numerical values and vice versa. For example, if we want to extract an integer from a
string we can write:

string mystr ("1204");

int myint;

stringstream(mystr) >> myint;

This declares a string object with a value of "1204", and an int object. Then we use stringstream's constructor
to construct an object of this type from the string object. Because we can use stringstream objects as if they
were streams, we can extract an integer from it as we would have done on cin by applying the extractor operator
(>>) on it followed by a variable of type int.

After this piece of code, the variable myint will contain the numerical value 1204.

[/ s g Enter price: 22.25
#include rea Enter quantity: 7
#include <string> Totaliprice: 15575
#include <sstream>

using namespace std;

int main ()
(.
string mystr;
float price=0;
int quantity=0;
cout << "Enter price: "7
getline (cin,mystr):
stringstream(mystr) >> price;
cout << "Enter quantity: ";
getline (cin,mystr);
stringstream(mystr) >> quantity:
cout << "Total price: " << price*quantity <<
endl;
return 0;

1

In this example, we acquire numeric values from the standard input indirectly. Instead of extracting numeric values
directly from the standard input, we get lines from the standard input (cin) into a string object (mystr), and then
we extract the integer values from this string into a variable of type int (quantity).

29

C++ Language

Using this method, instead of direct extractions of integer values, we have more control over what happens with
the input of numeric values from the user, since we are separating the process of obtaining input from the user (we
now simply ask for lines) with the interpretation of that input. Therefore, this method is usually preferred to get
numerical values from the user in all programs that are intensive in user input.

