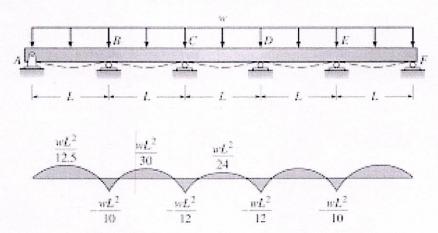
Kandula Srinivasa Reddy Memorial College of Engineering (Autonomous)

Kadapa-516003. AP

(Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC)

(An ISO 9001-2008 Certified Institution)


Department of Civil Engineering

Certification Course

on

Design of continuous beams using Microsoft Excel spread sheets

Course Instructor:

Prof. G. Sreenivasa Reddy, Professor, Civil Engg. Dept., KSRMCE

Course Coordinators:

U. Arun Kumar and C. Neelima, Assistant Professor, Civil Engg. Dept., KSRMCE

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India-516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

Lr./KSRMCE/CE/2020-21/

Date: 01-09-2020

From

U. Arun Kumar and C. Neelima, Asst. Professor, Dept. of Civil Engineering, KSRMCE (A), Kadapa.

To The Principal, KSRMCE (A), Kadapa.

Sub: Permission to Conduct Certificate Course – Reg.

Respected Sir,

The Department of Civil Engineering is planning to offer a certification course on Design of continuous beams using Microsoft Excel spread sheets for B. Tech. students of Civil Engineering. The course will start on 07th -09 - 2020 and the course will run for a total number of 30 hours. In this regard, I am requesting you to accept the proposal to conduct certification course.

Thanking you

Yours faithfully

(U. Arun Kumar & C. Neelima)

Permi Hed well

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India- 516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

Cr./KSRMCE/CE/2020-21/

Date: 02/09/2020

Circular

The Department of Civil Engineering is offering a certification course on Design of continuous beams using Microsoft Excel spread sheets. The course will start from 07-09-2020 to 21-09-20 and the course will run for a total number of 30 hours. In this regard, interested students of Civil Engineering are required to register for the Certification Course. The registration link is given below.

 $\underline{https://docs.google.com/forms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUfjef5I22w8kcLIQEdky61sop7Mhdc97n6GsR34skdmfi10w/vialedforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffefforms/f/g/lsQkfofgvUffeffo$ ewform

The Course Coordinator U Arun Kumar & C Neelima, Assistant Professor, Department of Civil Engg.- KSRMCE.

V. s.s. muly

Principal

PRINCIPAL K.S.R.M. COLLEGE OF ENGINEERING KADAPA - 516 003. (A.P.)

Cc to:

The Director, KSRMCE

The HoD-Civil, KSRMCE

IOAC-KSRMCE

(UGC-AUTONOMOUS) Kadapa, Andhra Pradesh, India- 516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Civil Engineering

Registration list of Certification course on

Design of continuous beams using Microsoft Excel spread sheets

SI.	Student Roll	Student Name	Mail ID
No.	No. 189Y1A0126	Venkata Jithendhar Reddy Duddekunta	189Y1A0126@ksrmce.ac.in
1	189Y1A0132	Lakshmi Prasad Reddy Guddila	189Y1A0132@ksrmce.ac.in
2			189Y1A0134@ksrmce.ac.in
3	189Y1A0134	Nitheesh Gunigari	
4	189Y1A0135	Sreeveni Hasti	189Y1A0135@ksrmce.ac.in
5	189Y1A0144	Bhanumanikanta Reddy Kannapu	189Y1A0144@ksrmce.ac.in
6	189Y1A0146	Govardhan Kaveti	189Y1A0146@ksrmce.ac.in
7	7 189Y1A0156 Sudheer Kumar Maadam		189Y1A0156@ksrmce.ac.in
8	189Y1A0158	Lokeshwar Reddy Mallireddy	189Y1A0158@ksrmce.ac.in
9	189Y1A0159	Ganesh Mandla	189Y1A0159@ksrmce.ac.in
10	189Y1A0163	Sampath Kumar Meka	189Y1A0163@ksrmce.ac.in
11	189Y1A0166	Siva Prasad Reddy Mitta	189Y1A0166@ksrmce.ac.in
12	189Y1A0171	Venkata Sai Poojith Nagalla Pati	189Y1A0171@ksrmce.ac.in
13	189Y1A0172	Venkatesh Nagirikanti	189Y1A0172@ksrmce.ac.in
	189Y1A0175	Abhish Nanubala	189Y1A0175@ksrmce.ac.in
14			189Y1A0179@ksrmce.ac.in
15	189Y1A0179	Jayachandra Sai Pandugolu	
16	189Y1A0187	Rakesh Prasanna Penubala	189Y1A0187@ksrmce.ac.in
17	189Y1A0193	Bindhu Rachamallu	189Y1A0193@ksrmce.ac.in
18	189Y1A0195	Swarna Latha Seelam	189Y1A0195@ksrmce.ac.in
19	19 189Y1A0198 Afroz Shaik		189Y1A0198@ksrmce.ac.in
20	100774 A 04 D 0	Sateesh Kumar Reddy Thallapalle	189Y1A01B0@ksrmce.ac.ir
21	100000000000000000000000000000000000000	Gayathri Thopudurthy	189Y1A01B4@ksrmce.ac.ir

22	189Y1A01B8	Venkata Hemanth Usugari	189Y1A01B8@ksrmce.ac.in
23	189Y1A01C3	Ganga Swetha Vennapusa	189Y1A01C3@ksrmce.ac.in
24	189Y1A01C6	Naga Hema Pranitha Sree Yelikanti	189Y1A01C6@ksrmce.ac.in
25	189Y1A01C8	Sivanatha Reddy Yeturu	189Y1A01C8@ksrmce.ac.in
26	199Y5A0107	Vijay Kumar Reddy Basireddygari	199Y5A0107@ksrmce.ac.in
27	199Y5A0108	Sai Bonthalapalli	199Y5A0108@ksrmce.ac.in
28	199Y5A0109	Mahesh Naik Bukke	199Y5A0109@ksrmce.ac.in
29	199Y5A0112	Mahesh Babu Chinthakunta	199Y5A0112@ksrmce.ac.in
30	199Y5A0116	Pavan Kalyan Dokka	199Y5A0116@ksrmce.ac.in
31	199Y5A0117	Dastagiri Dudekula	199Y5A0117@ksrmce.ac.in
32	199Y5A0118	Premaraju Erapogu	199Y5A0118@ksrmce.ac.in
33	199Y5A0123	Ramu Gosetty	199Y5A0123@ksrmce.ac.in
34	199Y5A0125	Venkateshwarlu Judam	199Y5A0125@ksrmce.ac.in
35	199Y5A0127	Venkateswarlu Kashetty	199Y5A0127@ksrmce.ac.in
36	199Y5A0130	Vinodkumar Madhuranthakam	199Y5A0130@ksrmce.ac.in
37	199Y5A0131	Bharath Venkata Sai Malle Bharath	199Y5A0131@ksrmce.ac.in
38	199Y5A0132	Mahesh Mallepogu Budigi	199Y5A0132@ksrmce.ac.in
39	199Y5A0134	Sai Kumar Mannula	199Y5A0134@ksrmce.ac.in
40	199Y5A0138	Reddaiah Nagulugari	199Y5A0138@ksrmce.ac.in
41	199Y5A0144	Praveen Kumar Reddy Pathi	199Y5A0144@ksrmce.ac.in
42	199Y5A0149	Chandramouli Sambaturu	199Y5A0149@ksrmce.ac.in
43	199Y5A0150	Sambasivareddy Sanikommu	199Y5A0150@ksrmce.ac.in
44	199Y5A0152	Mohammad Arief Shaik	199Y5A0152@ksrmce.ac.in
45	199Y5A0155	Sravani Sirigiri	199Y5A0155@ksrmce.ac.in

(Dondal

Coordinator

HoD-Civil Engg.

Head
Department of Civil Engineering
K.S.R.M. College of Engineering
(Autonomous)
KADAPA 516 003. (A.P.)

Syllabus of Certification Course

Course Name: Design of continuous beams using Microsoft Excel spread sheets

Duration: 30 Hours

MODULE I:

Flexibility Method of Analysis- Continuous beams with both ends fixed, one end fixed, both ends hinged, one side over hanging, both ends over hanging and with settlements at supports.

MODULE II:

Stiffness of Analysis- Continuous beams with both ends fixed, one end fixed, both ends hinged, one side over hanging, both ends over hanging and with settlements at supports.

MODULE III:

Introduction of MS Office Excel, creating spreadsheets for various continuous beam problems using flexibility method and stiffness method.

Textbooks:

- 1. D. Menon, Advanced Structural Analysis, Narosa Publication, 2020.
- 2. Das, Structural Analysis, Prentice Hall India Learning Private Limited; 1St Edition, 2011.

Reference Books:

1. Bittu Kumar, Mastering MS Office, V&S Publishers, 2017.

Hoad

Department of Civil Engineering K.S.R.M. College of Engineering (Autonomous)

KADAPA 516 003. (A.P.)

V. s. s. muly

PRINCIPAL K.S.R.M. COLLEGE OF ENGINEERING KADAPA - 516 003. (A.P.)

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India-516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of Civil Engineering

Certification course on "Design of continuous beams using Microsoft Excel spread sheets"

alysis- xed alysis- xed alysis- ed alysis- inged alysis-
alysis- xed alysis- ed alysis- inged alysis-
xed alysis- ed alysis- inged alysis-
alysis- ed alysis- inged alysis-
ed alysis- inged alysis-
alysis- inged alysis-
inged alysis-
alysis-
over
d with
nuous
ends
nuous
both
nts at
for
for
for
-01
for
-01
for
-01
ir ;

V. S. S. MW14 Principal

Instructor: White Coordinator: U Andry C Needly

PRINCIPAL

K.S.R.M. COLLEGE OF ENGINEERING KADAPA - 516 003. (A.P.)

/ksrmce.ac.in Follow Us: 🛐 🞯 💓 /ksrmceofficial

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India-516 003

Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu.

An ISO 14001:2004 & 9001: 2015 Certified Institution

Report of

Certification Course on Design of continuous beams using Microsoft Excel spread sheets

From 07/09/20 to 21/09/20

Target Group

Students

Details of Participants

45 Students

Co-coordinator(s)

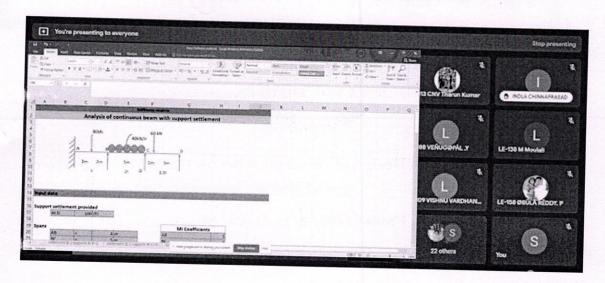
Sri. U. Arun Kumar and Miss. C. Neelima

Organizing Department

Civil Engineering

Venue

Online (google meet)


Link: https://meet.google.com/lookup/lwrndoa31h

Description:

The Department of Civil Engineering offered the Certification Course in "Design of continuous beams using Microsoft Excel spread sheets" from 07/09/20 to 21/09/20 and the course was organized for a total number of 30 hours. The course was instructed by Prof. G. Sreenivasa Reddy (Professor, Dept. Civil Engg.) and coordinated by Sri. U. Arun Kumar and Miss. C. Neelima (Assistant Professor, Dept. of Civil Engg.).

The present course mainly concentrated on analysis of continuous beams with various supports. Both Stiffness Method, Flexibility Method of Analysis were used to analyze- Continuous beams with both ends fixed, one end fixed, both ends hinged, one side over hanging, both ends over hanging and with settlements at supports. The course covers basics of Excel to write mathematical equations and to automate the Stiffness Method and Flexibility Method in Excel spread sheet.

Photo:

(Course Instructor)

(HoD, Civil Engg.)

Department of Civil Engineering K.S.R.M. College of Engineering V. S. S. Muly

Principal

PRINCIPAL (Autonomous)

KADAPA 516 003. (A.P.)

KADAPA - 516 003. (A.P.)

(UGC-AUTONOMOUS)

Kadapa, Andhra Pradesh, India- 516 003 Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu

DEPARTMENT OF CIVIL ENGINEERING

Certificate Course

on

"Design of Continuous Beams using Microsoft Excel Spread Sheets"

Resource Person

Prof. G Sreenivasa Reddy

Department of Civil Engineering

07-09-2020 21-09-2020

Coordinators:

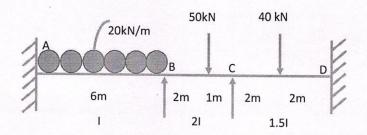
U. Arun Kumar, Miss C. Neelima Assistant Professor, CED, KSRMCE Department of Civil Engineering

Attendance sheet of C	Certification course on	Design of	continuous	beams using	Microsoft Exce	al spread sheets
Treestamie bileet of C	Jeruniani course on	D COIGII OI	communications	Deallis donly	THE COSOIL LAC	i opicau siiccis

SI		lace sheet of defanicado	07/	08/	09/	10/	11/0	12/	14/	15/	16/	17/	18/	19/	21/
·N	Student Roll No.	Student Name	09	09	09	09	9	09	09	09	09	09	09	09	09
0.	11021101		T		13	r i	1		F		L.	1	7	T	T.
1	189Y1A0126	Venkata Jithendhar Reddy Duddekunta	V	L	<u></u>	v	-	L	ı	1	L		A	A	V
2	189Y1A0132	Lakshmi Prasad Reddy Guddila	V	A	ı		1	L	ı	1	L	レ	v	v	v
3	189Y1A0134	Nitheesh Gunigari	V		2	V	<u></u>	v	L	v	L	ı	し	V	V
4	189Y1A0135	Sreeveni Hasti	~	V	V	V	~	~	L	1	·	L	V	V	-
5	189Y1A0144	Bhanumanikanta Reddy Kannapu	V	L	V	A	V	V	V	v	v	V	-	-	L
6	189Y1A0146	Govardhan Kaveti	V	~	L	- 1	L	L	1		L	-	-	- し	- 1
7	189Y1A0156	Sudheer Kumar Maadam	V	V	A	V	v	L	V	A	-	L	L	L	~
8	189Y1A0158	Lokeshwar Reddy Mallireddy	V	v	V	<u></u>	1	L	V	-	V	L	1	V	V
9	189Y1A0159	Ganesh Mandla	A	L	~	_	~	V	V	<i>\</i>	V	V	V	-	·A
10	189Y1A0163	Sampath Kumar Meka			V	~	L	~	-	L	W	L	V	1-	~
11	189Y1A0166	Siva Prasad Reddy Mitta	W	-	L	~	v	V	1	L	A	v	1	U	c
12	189Y1A0171	Venkata Sai Poojith Nagalla Pati	4	~	L	A	v	v	V	~	- レ	L	-	2	L
13	189Y1A0172	Venkatesh Nagirikanti	-	-	V	~	V		-		U	V	V	V	-
14	189Y1A0175	Abhish Nanubala	L	ーレ	L	~	-	~	V	V	V	V	V	_	A

15	189Y1A0179	Jayachandra Sai Pandugolu	~		L	A	V	V	L	~		L	L	A	A
16	189Y1A0187	Rakesh Prasanna Penubala	A			-	V	v	v	V	V	1		r	·
17	189Y1A0193	Bindhu Rachamallu	~	1	~	V	V	- 0	~	1	~	V	L	V	0
18	189Y1A0195	Swarna Latha Seelam	6	-	_	V	~	c	L	1	•	·	L	A	-
19	189Y1A0198	Afroz Shaik	L	~	L	V	A	V	0	- 0	r	L	0	_	v
20	189Y1A01B 0	Sateesh Kumar Reddy Thallapalle	V	A	e	v	V	~	L	~	_	_	_	-	_
21	189Y1A01B 4	Gayathri Thopudurthy	v	v	V	V	V	V	ı	L	~	~	L	L	-
22	189Y1A01B 8	Venkata Hemanth Usugari	V	c	v	L	A	~	L	A	V	V	-	·	-
23	189Y1A01C 3	Ganga Swetha Vennapusa	V	C	V	-	~	<u></u>	-	1	V	L	L	L	_
24	189Y1A01C 6	Naga Hema Pranitha Sree Yelikanti	v	L	~	~	L	V	V	1	L	L	~	L	_
25	189Y1A01C 8	Sivanatha Reddy Yeturu	c	A	~	L	V	L	~	V	U	A	c	~	L
26	199Y5A0107	Vijay Kumar Reddy Basireddygari	c	C	c	v	A	ш	レ	~	L	L	A	L	L
27	199Y5A0108	Sai Bonthalapalli	-	-	-	-	v	~	V	~	1	-	V	1	_
28	199Y5A0109	Mahesh Naik Bukke	1	<u>_</u>	L	C	L		L	1	V	_	L	A	~
29	199Y5A0112	Mahesh Babu Chinthakunta	L	U	A	-	~	c	~	V	~	A	5	v	<u></u>
30	199Y5A0116	Pavan Kalyan Dokka	1		1	V	·	v	V	/	V	~	V	L	V

31	199Y5A0117	Dastagiri Dudekula	A	_	_	V	L	- C	L	-	V	V	V	~	V
32	199Y5A0118	Premaraju Erapogu	A	-	-	L	L	-	L	V	V	V	V	-	
33	199Y5A0123	Ramu Gosetty	V	V		1	·	A	L		V	A	~	-	~
34	199Y5A0125	Venkateshwarlu Judam		A	-	L	L		1	V	V	V	v	-	V
35	199Y5A0127	Venkateswarlu Kashetty	c	V	~	~	V	A	V	L	V	A	V	V	-
36	199Y5A0130	Vinodkumar Madhuranthakam	L	~	·	. ~	V	-	-	~	·			<u></u>	L
37	199Y5A0131	Bharath Venkata Sai Malle Bharath	A	V	c	2	A	~	A	-	V	V	~	A	v
38	199Y5A0132	Mahesh Mallepogu Budigi	L	c	V	L	L	<u></u>	V	<u></u>	١	<u></u>	V	V	L
39	199Y5A0134	Sai Kumar Mannula	-	_	C	1	L	<u></u>	-	_	A	V	~	~	L
40	199Y5A0138	Reddaiah Nagulugari	~	L	-	-			-	_	v	V	2	-	1
41	199Y5A0144	Praveen Kumar Reddy Pathi	L	4	L	A	し	<u></u>	V	-	v		V		A
42	199Y5A0149	Chandramouli Sambaturu	~	_	C	L	V	~	v	_	V	A	V	~	-
43	199Y5A0150	Sambasivareddy Sanikommu	V	-	c	L	V	<u></u>	_	_	L		L		L
44	199Y5A0152	Mohammad Arief Shaik	~	-	A	L	L	<u></u>	A	C	V	L	V	A	-
45	199Y5A0155	Sravani Sirigiri	V		4	V	-	~	2	-	1	c	V	V	V


Coordinator

HoD-Civil Engg.

Department of Civil Engineering K.S.R.M. College of Engineering (Autonomous) KADAPA 516 003. (A.P.)

Stiffness method

Analysis of continuous beam with both ends fixed

Input data

Spans

AB		6	m
BC	= 1	3	m
CD	=	4	m

MI coefficents							
AB	1						
BC	2						
CD	1.5						

Loads

on	AB	UDL	20	kN/M	NA	Ξ	3	m
on	BC	Pointload	50	kN	Dist. from left end	6 = 6	2	m
on	CD	Pointload	40	kN	Dist. from left end	E	2	m

Step-1 Fixed end moments

M ^F _{AB}	10 E 100	-60.00	kN-m
M ^F _{BA}	=	60.00	kN-m
M ^F _{BC}	-	-11.11	kN-m
MF _{CB}	=	22.22	kN-m
M ^F _{CD}	-	-20.00	kN-m
M ^F _{DC}	- 10 E	20.00	kN-m

Step-2 R and R_F Matrix

R Matrix will exists only if you have load (i.e.moment) at the coordinate system

R	 0
220000000000000000000000000000000000000	U U

R1 =	0	kN-m
R2 =	0	kN-m

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F$	=	48.9	kN-m
		Charles and the second		

R _{F2}	$= M_{CB}^F + M_{CD}^F$		= 3	2.22	kN-m
-----------------	-------------------------	--	-----	------	------

R-R_{F Matrix}

$R_1-R_{F1} =$	-48.9	kN-m
R ₂ -R _{F2} =	-2.22	kN-m

Step-3 Stiffness Matrix

S ₁₁ :	= 3.33	El
S ₂₁ :	= 1.33	El
S ₁₂	= 1.33	El
	4.17	El

	The second secon	Sandard State of the Control of the	
	_ 1/EI	0.34	-0.11
S'	= 1/El	-0.11	0.28

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{21} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

Unknown Displacements

$$D=S^{-1}\big\{R-R_f\big\}$$

Θ_{A}	= 0	/E1
Θ_{B}	= -16.57	/EI
Θ_{c}	= 4.77	/EI
Θ_{D}	= 0	/EI

Final Moments

M _{AB}	=	-65.52	KN/m
M _{BA}	=	48.95	KN/m
M _{BC}	3 30	-48.95	KN/m
M _{CB}	3.1	12.84	KN/m
M _{CD}	= =	-12.84	KN/m
M _{DC}		23.58	KN/m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	170=750	90.00	kN-m
In span	ВС	M _{max}	=	33.33	kN-m
In span	CD	M _{max}	of the second	40.00	kN-m

Reactions at supports

For span A	В	Wald had buy on the	Toron Salara
RB1	57.24	KN	The standard stands of the standard sta
RA	62.76	KN	

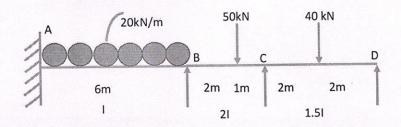
Series And Series

建特殊等的特。

For span BC

RC1	21.30	KN
· RB2	28.70	KN

For span CD


RD	22.68	KN
RC2	17.32	KN

Final Reactions

R _A	62.76	KN
R _B	85.94	KN
R _c	38.61	KN
R_{D}	22.68	KN

stiffness method

Analysis of continuous beam with one end fixed and other end hinged

Input data

Spans

AB	4 =	6	M
ВС	= =	3	M
CD	# # # # # # # # # # # # # # # # # # #	4	М

MI coefficents					
	AB	1			
	BC	2			
5-11-51-51	CD	1.5			

Loads

on	AB	UDL	20	KN/M	NA		3
on	ВС	Pointload	50	KN	Dist. from left end	= =	2
on	CD	Pointload	40	KN	Dist. from left end	7=	2

Step-1 Fixed end moments

M ^F _{AB}	=	-60.00	kN-M
M ^F _{BA}	200 = 000	60.00	kN-M
M ^F _{BC}	= -	-11	kN-M
MF _{CB}	= = =	22.22	kN-M
M ^F _{CD}	. =	-20	kN-M
M ^F _{DC}	=	20	kN-M

Step-2 R and RF matrix

R Matrix will exists only if you have load (i.e.moment) at the coordinate system

	0
=	=

R1		0
R2	=	0
R3	<u> -</u>	0

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F$	48.9	kN-m
R _{F2}	$= M_{CB}^F + M_{CD}^F$	2.22	kN-m
RF4	$= M_{DC}^F$	20.00	kN-m

R-R_f matrix

R ₁ -R _{F1}	= -48.9	kN-m
R ₂ -R _{F2}	= -2.22222	kN-m
R ₃ -R _{F3}	= -20	kN-m

Step-3 Stiffness Matrix

10			

S ₁₁ =	3.33	El
S ₂₁ =	1.33	EI -
S ₃₁ =	0	El

2nd column

S ₁₂	=	1.33	El
S ₂₂	=	4.17	El
S ₃₂	=	0.75	ΈI

3rd column

S ₁₃	=	0	EI
S ₂₃		0.75	El 💮 💮 🔭
S ₃₃	=	1.50	EI

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{CD}$$

	3.33	1.33	0
S = EI	1.33	4.17	0.75
	0	0.75	1.50

Step 4 Displacement matrix

$$D=S^{-1}\big\{R-R_f\big\}$$

Θ_{A}	=	0	1/EI
Θ_{B}	(1) (1) = (1) (1)	-18	1/El
θς	=	8.4	1/EI
θρ	=	-17.5	1/El

Step 5 Final moments

M _{AB}	= .95	-66	KN/m
M _{BA}	= 1	48	KN/m
M _{BC}	Marie III		KN/m
M _{CB}	=		KN/m
M _{CD}	=		KN/m
M _{DC}	dolba.		KN/m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	=	90.00	kN-m
In span	BC	M _{max}	= 200	33.33	kN-m
In span	CD	M _{max}		40.00	kN-m

"" "我们的是一个

Reactions at supports

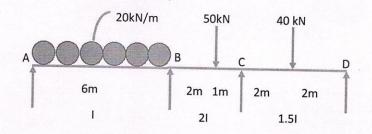
For span AB

RB1	57.00	KN	
RA	63.00	KN	

For span BC

RC1	24.19	KN	
RB2	25.81	KN	

For span CD


RD	14.86	KN		
RC2	25.14	KN		

Final Reactions

R _A	63.00	KN
R _B	82.80	KN
R_{c}	49.33	KN
R_{D}	14.86	KN

stiffness method

Anaysis of continuous beam with both ends hinged

Input data

Spans

AB	and e	6	m
BC	000 E	3	m
CD	= 1	4	m

	MI coefficents			
	AB	1		
- 61	BC	2		
	CD	1.5		

Loads

on	AB	UDL	20	kN/m	NIA			
on	D.C.	0	2002000		NA	= =	3	m
on	BC	Pointload	50	kN	Dist. from left end		2	
on	CD	Pointload	40	kN				m
		Tomradad	40	KIN	Dist. from left end	=	2	m

Step-1 Fixed end moments

M ^F _{AB}	= =	-60	KN-M
M ^F _{BA}	=	60	KN-M
M ^F _{BC}		-11.11	KN-M
MF _{CB}	= ***	22.22	KN-M
M ^F _{CD}		-20	KN-M
M ^F _{DC}	E.	20	KN-M

Step-2 R and R_F matrix

R Matrix will exists only if you have load (i.e.moment) at the coordinate system

R	=		()

R ₁	= = = = = = = = = = = = = = = = = = = =	0
R ₂	W =	0
R ₃	=	0
R ₄	1 =	0

Net fixed end moment at coordinates

R _{F1}	$= M_{AB}^F$	= .	-60	kN/m
R _{F2}	$= M_{BA}^F + M_{BC}^F$		48.9	kN/m
R _{F3}	$= M_{CB}^F + M_{CD}^F$	= 100	2.22	kN/m
R _{F4}	$= M_{DC}^F$		20.00	kN/m

R-R_f matrix

R ₁ -R _{F1}	= 1	60	kN/m
R ₂ -R _{F2}	=	-48.89	kN/m
R ₃ -R _{F3}	-	-2.22	kN/m
R ₄ -R _{F4}		-20	kN/m

Step-3 Stiffness Matrix

1st column

S ₁₁	=	0.67	EI
S ₂₁	=	0.33	El
S ₃₁	=	0	EI
S ₄₁	=	0	El

2nd column

		0.00	e.
S ₁₂		0.33	El
S ₂₂		3.33	EI
S ₃₂	= =	1.33	El
S ₄₂	= =	0	EI

3rd column

S ₁₃	= 0	0	El
S ₂₃	=	1.33	El
S ₃₃	=	4.17	El
S ₄₃	=	0.75	El

4th column

S ₁₄	=	0	El
S ₂₄	=	0	El
S ₃₄	=	0.75	El
S ₄₄		1.5	El

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{AB}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{43} = S_{34} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{44} = \left(\frac{4EI}{L}\right)_{CD}$$

	0.67	0.33	0	0
	0.33	3.33	1.33	0
S = EI	0	1.33	4.17	0.75
	0	0	0.75	1.5

Step 4 Displacement matrix

Θ_{A}	= = -	105.13	/EI	•	
Θ _B	=	-30.26	/EI	T. State	Allera.
Θ _c	do =	12.69	/EI		
Θ _D	=	-19.68	/EI		

Step 5 Final moments

M _{AB}	Ē	0	kN/m
M _{BA}	= 3	74.87	kN/m
M _{BC}	= :	-74.87	kN/m
M _{CB}	= (15.72	kN/m
M _{CD}	=	-15.72	kN/m
M _{DC}	- = -	0	kN/m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	=	90.00	kN-m
In span	BC	M _{max}		33.33	kN-m
In span	CD	M _{max}	## ±###	40.00	kN-m

Reactions at supports

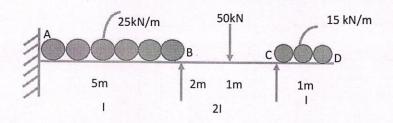
For span AB

RB1	72.48	KN
RA	47.52	KN

For span BC

RC1	13.62	KN
RB2	36.38	KN

For span CD


RD	16.07	KN
RC2	3.93	KN

Final Reactions

R _A	47.52	KN
R _B	108.86	KN
R _c	17.55	KN
R _D	16.07	KN

Stiffness method

Analysis of overhanging beam with other end fixed

Input data

Spans

AB	=	5	m
BC	=	4	m
CD	=	1	m

MI coefficents				
	AB	1		
100 (200)	BC	2		
	CD	1		

Loads

on	AB	UDL	25	kN/m	NA	=	3	m
on	BC	Pointload	50	kN	Dist. from left end	king a	3	m
on	CD	UDL	15	kN/m	NA		0.5	m

Step-1 Fixed end moments

M ^F _{AB}	= 15	-52.08	kN-m
M ^F _{BA}	=	52.08	kN-m
M ^F _{BC}	=	-9.38	kN-m
MF _{CB}	= 11	28.13	kN-m
M ^F _{CD}	+0=	-7.50	kN-m

Step-2 R and R_F Matrix

Since at "Node 2" there is a load (i.e.moment) at the coordinate system of value,

R2	=	7.50	kN-m
			10111101000000000000000000000000000000

we know that,

26 = 300 A	0	kN-m
	26 = 200	= 0

Net fixed end moment at coordinates

R _{F1} =	42.71	kN-m
R _{F2} =	20.63	kN-m

R-R_{F Matrix}

R ₁ -R _{F1}	=	-42.7	kN-m
R ₂ -R _{F2}	=	-13.13	kN-m

Step-3 Stiffness Matrix

S ₁₁ ·	=	2.80	EI
S ₂₁	A SECTION	1.00	El
. S ₁₂	=	1.00	El
S ₂₂		2.00	El

$$S^{-1}$$
 = 1/EI $\begin{array}{c|c} 0.43 & -0.22 \\ \hline -0.22 & 0.61 \end{array}$

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC}$$

Unknown Displacements

Θ_{A}		0	/EI
Θ_{B}	=	-15.72	/EI
$\Theta_{\rm c}$	=	1.30	/EI
Θ_{D}	= 5.53	0	/EI

Final Moments

M _{AB}		-58.37	KN/m
M _{BA}	=	39.51	KN/m
M _{BC}		-39.51	KN/m
M _{CB}	17 E	15.00	KN/m
M _{CD}	=	-7.50	KN/m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	PANEL DIS	78.13	kN-m
In span	span BC			37.50	kN-m
In span	CD	M _{max}	建筑等级	7.50	kN-m

Reactions at supports

For span AB

R _{B1}	58.73	kN-m	
R _A	66.27	kN-m	STEELS ST

areas in the

ansakeanyyekilinkeen

For span BC

R _{C1}	31.37	kN-m	
R _{B2}	18.63	kN-m	

For span CD

		Control of the Contro
R _{C2}	15.00	kN-m

Final Reactions

R _A	66.27	KN
R_B	77.36	KN
R _c	46.37	KN

Stiffness method

Analysis of continuous beam with both sides overhanging

Input data

Spans

OA	= 0.75 m
AB	= 5 m
BC	= 3 m
CD	= 1 m

MI Coefficients				
AB	1			
BC	1			

Loads

on	OA	Point load	40	KN	Distance from left end	=	0	lm
on	AB	UDL	25	KN/m	NA	=	2.5	m
on	BC	Point load	50	KN	Distance from left end	=600	2	m
on	CD	UDL	15	KN/m	NA	=	0.5	m

Step-1 Fixed end Moments

M ^F _{AO}	e d	30	kN-m
M ^F _{AB}	= 1	-52.08	kN-m
M ^F _{BA}	=	52.08	kN-m
M ^F _{BC}	=	-11.11	kN-m
M ^F _{CB}	=	22.22	kN-m
M ^F _{CD}	E	-7.5	kN-m

Step-2 R and RF Matrix

R Matrix will exists as you have load (i.e. moment) at the coordinate system

R ₁ =	30	Kn m
R ₂ =	0	Kn m
R ₃ =	7.5	Kn m

Net fixed end moment at coordinates

R _{F1}	$=M_{AB}^{F}$	-52.08	kN-m
R _{F2}	$= M_{BA}^F + M_{BC}^F$	40.97	kN-m
R _{F3}	$= M_{CB}^F + M_{CD}^F$	22.22	kN-m

R-R_{F Matrix}

R ₁ -R _{F1} =	82.08 kN-m
$R_2-R_{F2} =$	-40.97 kN-m
$R_3-R_{F3} =$	-14.72 kN-m

Step-3 Stiffness Matrix

1st column

S ₁₁ =	0.80	El
S ₂₁ =	0.40	El
S ₃₁ =	0	El

2nd column

S ₁₂ =	0.40 EI
S ₂₂ =	2.13 EI
S ₃₂ =	0.67 EI

3rd column

S ₁₃	=	0	El
S ₂₃	=	0.67	El
S ₃₃	-9- = 3	1.33	EI

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{AB}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{BC}$$

	77	0.80	0.40	0
s =	El	0.40	2.13	0.67
		0	0.67	1.33

Unknown displacements

θ_A	= 125.93 /EI
θ_B	= -46.66 /EI
θ_C	= 12.29 /EI

Final moments

M _{AO}	= -	30	KN-m
M _{AB}	=	30	KN-m
M _{BA}	= 20	65.13	KN-m
M _{BC}	= 12	-65.13	KN-m
M _{CB}	= 1	7.5	KN-m
M _{CD}	= =	-7.5	KN-m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	OA	M _{max}	= 1	11.25	kN-m
In span	AB	M _{max}	= 1	78.13	kN-m
In span	BC	M _{max}	1961 = 2000 (4)	56.25	kN-m
In span	CD	M _{max}	= 1	7.50	kN-m

Service of Manager 12 (a)

Reactions at supports

For span OA


The second second second	
40	kN-m
В	
81.53	kN-m
43.47	kN-m
С	
55.79	kN-m
-5.79	kN-m
	81.53 43.47 CC 55.79

For span CD

R _{C2}	15.00	kN-m
Final React	ions	
R _A	83.47	. KN
R _B	75.74	KN
R _c	70.79	KN

Stiffness matrix

Analysis of continuous beam with support settlement

Input data

Support settlement provided

At B	100	/EI
At C	75	/EI

Spans

AB	=040000	4	m
BC	=	5	m
CD	E	4	m

MI Coefficients		
AB	1	
BC	2	
CD	1.5	

Loads

on	AB	Point load	80 KN	Distance from left end	=	2 m
on	BC	UDL	40 KN/m	NA		2.5 m
on	CD	Point load	60 KN	Distance from left end	=	1 m

Step-1 Fixed end Moments

M ^F _{AB}	=	-40	kN-m
M ^F _{BA}	=	40	kN-m
M ^F _{BC}	=	-83.33	kN-m
M ^F _{CB}	=	83.33	kN-m
M ^F _{CD}	== 5	-33.75	kN-m
M ^F _{DC}	= 2	11.25	kN-m

Fixed end moments due to support setlement

M ¹ _{AB}	=	-37.5	Kn-m
M ¹ _{BA}	=	-37.5	Kn-m
M ¹ _{BC}	=	6	Kn-m
M ¹ _{CB}	=	6	Kn-m
M ¹ _{CD}	= 1	28.13	Kn-m
M ¹ _{DC}	=	28.13	Kn-m

Step-2 R and R_F Matrix

R matrix is zero since the moment is not at the coordinate system

R ₁	A = 4 A A	0
R ₂	= 1	0
R ₃		0

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F + M_{BA}^I + M_{BC}^I$	-74.83	kN-m
R _{F2}	$= M_{CB}^F + M_{CD}^F + M_{CB}^I + M_{CD}^I$	83.71	20076-04-000
R _{F3}	$= M^F_{DC} + M^I_{DC}$	39.38	kN-m

R-R_F matrix

R ₁ -R _{F1} :	74.83	kN m
R ₂ -R _{F2} :	-83.71	kN m
R ₃ -R _{F3} :	-39.38	kN m

Step-3 Stiffness Matrix

1st column

S ₁₁	=	2.60	El
S ₂₁	=	0.80	El
S ₃₁		0	El

2nd column

100				
OFFICERSOR	S ₁₂		0.80	EI
1	S ₂₂	= :	3.10	EI-
1000	S ₃₂	44 = vii.	0.75	EI

3rd column

S ₁₃	=	0	El
S ₂₃	=	0.75	El
S ₃₃	14.69 = 14.6	1.50	El

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{CD}$$

	2.60	0.80	0
S = EI	0.80	3.10	0.75
	0	0.75	1.50

θ_{A}	0	/EI
$\theta_{\mathtt{B}}$	39.586889	/EI
θ_{c}	-35.11572	/El
θ_{D}	-8.692139	/EI

Final Moments

M _{AB}	=	-57.71	kN-m
M _{BA}	=	42.09	kN-m
M _{BC}	=	-42.09	kN-m
M _{CB}	=	64.82	kN-m
M _{CD}		-64.82	kN-m
M _{DC}	=	. 0	kN-m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}		80.00	kN-m
In span	ВС	M _{max}		125.00	kN-m
In span	CD	M _{max}	= 5.20	45.00	kN-m

nelitaria produktive is

1995年1901年

Reactions at supports

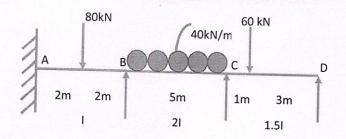
For span AB

· RB1	36.10	KN
RA	43.90	KN

For span BC

RC1	104.55	KN
RB2	95.45	KN

For span CD


RD	-1.20	KN
RC2	61.20	KN

Final Reactions

R _A	43.90	KN
R _B	131.55	KN
R _C	165.75	KN
R _D	-1.20	KN

Stiffness matrix

Analysis of continuous beam with support settlement

Input data

Support settlement provided

At B	75	/EI
At C	100	/EI

Spans

AB	É	4	m
BC	= 5 00	5	m-
CD	= ()	4	m

	MI Coefficients	
AB		1
BC		2
CD		1.5

Loads

on	AB	Point load	80 KN	51		
20			OU KIN	Distance from left end		2 m
on	BC	UDL	40 KN/m	NA	E	2.5 m
on	CD	Point load	60 KN	Distance from Left 1	100 TO 10	2.5 m
IA STEE			oo ita	Distance from left end	=	1 m

Step-1 Fixed end Moments

M AB	=	-40	kN-m
M ^F _{BA}	=	40	kN-m
M ^F _{BC}	=	-83.33	kN-m
M ^F _{CB}	=	83.33	kN-m
M ^F _{CD}	=	-33.75	kN-m
M_{DC}^F	=	11.25	kN-m

Fixed end moments due to support setlement

M ¹ _{AB}	=	-28.125	Kn-m
M ¹ _{BA}	=	-28.125	
M ¹ _{BC}	E A SA		Kn-m
M ¹ _{CB}	=		Kn-m
M ¹ _{CD}	=	37.50	
M ¹ _{DC}	=	37.50	CONTROL DE LA CO

Step-2 R and R_F Matrix

R matrix is zero since the moment is not at the coordinate system

R ₁	=	0
R ₂	=	0
R ₃	=	0

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F + M_{BA}^I + M_{BC}^I$	-65.46 kN-m
R _{F2}	$= M_{CB}^F + M_{CD}^F + M_{CB}^I + M_{CD}^I$	93.08 kN-m
R _{F3}	$= M_{DC}^{l} + M_{DC}^{l}$	48.75 kN-m

R-R_F matrix

R ₁ -R _{F1}	=	65.46	kN m
R ₂ -R _{F2}		-93.08	kN m
R ₃ -R _{F3}		-48.75	kN m

Step-3 Stiffness Matrix

1st column

S ₁₁	= 1	2.60	EI
S ₂₁	=	0.80	El
S ₃₁	= -	0	El

2nd column

S ₁₂	=	0.80	El
S ₂₂	= -	3.10	El
S ₃₂	=	0.75	El

3rd column

S ₁₃	- 11=	0	EI
S ₂₃	=	0.75	El
[*] S ₃₃		1.50	EI

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{CD}$$

		2.60	0.80	0
S =	EI	0.80	3.10	0.75
		0	0.75	1.50

Unknown displacements

θ_{A}	0	/EI
$\theta_{\mathtt{B}}$	36.20491	/EI
θ_{c}	-35.843	/EI
θ_{D}	-14.5785	/EI

Final Moments

M _{AB}	=	-50.02	kN-m
M _{BA}	=	48.08	kN-m
M _{BC}	=	-48.08	kN-m
M _{CB}	=	60.95	kN-m
M _{CD}	=	-60.95	kN-m
M _{DC}	=	0	kN-m

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	= -	80.00	kN-m
In span	BC	M _{max}	=	125.00	kN-m
In span	CD	M _{max}	- E	45.00	kN-m

Sinder constitut t

and a security

Reactions at supports

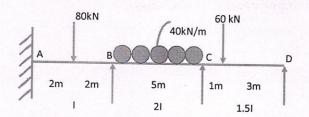
For span AB

RB1	39.51	KN
RA	40.49	KN

For span BC

RC1	102.57	KN
RB2	97.43	KN

For span CD


RD	-0.24	KN
RC2	60.24	KN

Final Reactions

RΔ	40.49	KN
R _B	136.94	KN
R _C	162.81	KN
R _D	-0.24	, KN

Stiffness matrix

Analysis of continuous beam with support settlement

Input data

Support settlement provided

At A	75	/EI

Spans

AB	=	4	m
BC	=	5	m
CD	=	4	m

MI Coefficients		
AB	1	
BC	2	
CD	1.5	

Loads

on	AB	Point load	80 KN	Distance from left end		2	m
on	BC	UDL	40 KN/r	NA	-	1	
on	CD	Point load	60 KN	Distance from left end	=	1	

Step-1 Fixed end Moments

M ^F _{AB}	=	-40	kN-m
M ^F BA	=		kN-m
M ^F _{BC}	=	-83.33	kN-m
M ^F _{CB}	=	83.33	kN-m
M ^F CD	=	-33.75	kN-m
M ^F _{DC}	=	11.25	kN-m

Fixed end moments due to support setlement

M ¹ _{AB}	= 100	-28.125	Kn-m
M ¹ _{BA}	=	-28.125	Kn-m

Step-2 R and R_F Matrix

R matrix is zero since the moment is not at the coordinate system

R ₁	=	0
R ₂	= =	0
R ₃	E E E	0

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F + M_{BA}^I$	-71.46	kN-m
R _{F2}	$=M_{CB}^F+M_{CD}^F$	49.58	kN-m
R _{F3}	$=M^{F}_{DC}$	11.25	kN-m

R-R_F matrix

R ₁ -R _{F1}	=	71.46	kN m
R ₂ -R _{F2}	= 1	-49.58	kN m
R ₃ -R _{F3}	=	-11.25	kN m

Step-3 Stiffness Matrix

1st column

S ₁₁	= 2.60	EI
S ₂₁	= 0.80	EI
S ₃₁	= C	El

2nd column

S ₁₂	=	0.80	EI
S ₂₂	=	3.10	EI
S ₃₂	=0.7	0.75	El

3rd column

2000	HOROS CONTRACTOR CONTRACTOR		Property and the second second second	
	S ₁₃	= 400	0	EI-
	S ₂₃	=	0.75	El
	S ₃₃	= 2	1.50	El

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{CD}$$

		2.60	0.80	0
S =	EI	0.80	3.10	0.75
		0	0.75	1.50

Unknown displacements

θ_{A}	0	/EI
θ_{A} θ_{B}	35.669608	/EI
θ_{c}	-26.60331	/EI
θ _D	5.801655	/EI

Final Moments

M _{AB}	=	-50.29	kN-m	
M _{BA}	=	47.54	kN-m	
M _{BC}	=	-47.54	kN-m	
M _{CB}	=0.00	69.30	kN-m	
M _{CD}	=	-69.30	kN-m	
Mpc	=	0	kN-m	

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}		80.00	kN-m
In span	BC	M _{max}		125.00	kN-m
In span	CD	M _{max}	= 3	45.00	kN-m

Reactions at supports

For span AB

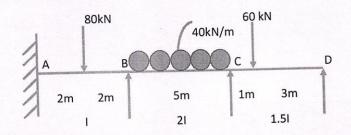
RB1	39.31	KN	
RA	40.69	KN	
For span	ВС	The property of the second	19,000,000,000

Surveyor of chellen

For span BC

RC1 104.35		KN	
RB2	95.65	KN	

For span CD


RD	-2.33	KN
RC2	62.33	KN

Final Reactions

R _A	40.69	KN
R _B	134.96	KN
R _c	166.68	KN
R _D	-2.33	KN

Stiffness matrix

Analysis of continuous beam with support settlement

Input data

Support settlement provided

At D	100	/EI
------	-----	-----

Spans

AB	4	m
ВС	5	m
CD	4	m

MI Coefficients		
AB		1
ВС	學學有工具學物質的意思	2
CD	1	.5

Loads

on	AB	Point load	80 KN	Distance from left end	=	2 m
on	BC	UDL	40 KN/m	NA	= 1	1 m
on	CD	Point load	60 KN	Distance from left end	= 1	1 m

Step-1 Fixed end Moments

M ^F _{AB}	=	-40	kN-m
M ^F _{BA}	=	40	kN-m
M ^F _{BC}	=	-83.33	kN-m
M ^F _{CB}	=	83.33	
M ^F _{CD}	= 0	-33.75	kN-m
M ^F _{DC}	=	11.25	kN-m

Fixed end moments due to support setlement

M ¹ _{CD}	=	37.50	Kn-m
M ¹ _{DC}	=	37.50	Kn-m

Step-2 R and R_F Matrix

R matrix is zero since the moment is not at the coordinate system

R ₁	= 1111	0
R ₁ R ₂ R ₃	=	0
R ₃		0

Net fixed end moment at coordinates

R _{F1}	$= M_{BA}^F + M_{BC}^F$	-43.33	kN-m
R _{F2}	$= M_{CB}^F + M_{CD}^F + M_{CD}^I$	87.08	kN-m
R _{F3}	$= M^{F}_{DC} + M^{I}_{DC}$	48.75	kN-m

R-R_F matrix

R ₁ -R _{F1}	=	43.33	kN m
R ₂ -R _{F2}	= 3	-87.08	kN m
R ₃ -R _{F3}	= :	-48.75	kN m

Step-3 Stiffness Matrix

1st column

S ₁₁	=	2.60	El
S ₂₁	=	0.80	EI
S ₃₁	=	0	El

2nd column

· S ₁₂	=	0.80	El
S ₂₂	=	3.10	El
S ₃₂	= 4	0.75	El 1

3rd column

S ₁₃	= 3	0	El
S ₂₃	= 4,	0.75	El
S ₃₃		1.50	El

$$S_{11} = \left(\frac{4EI}{L}\right)_{AB} + \left(\frac{4EI}{L}\right)_{BC}$$

$$S_{21} = S_{12} = \left(\frac{2EI}{L}\right)_{BC}$$

$$S_{22} = \left(\frac{4EI}{L}\right)_{BC} + \left(\frac{4EI}{L}\right)_{CD}$$

$$S_{32} = S_{23} = \left(\frac{2EI}{L}\right)_{CD}$$

$$S_{33} = \left(\frac{4EI}{L}\right)_{CD}$$

0	0.80	2.60			
0.75	3.10	0.80	El	=	S
1.50	0.75	0			

Unknown displacements

θ_A	0	/EI
θ_{B}	26.10551	/EI
θ _c	-30.6762	/EI
θ_D	-17.1619	/EI

Final Moments

M _{AB}	= 5 600	-26.95	kN-m	A STANDARD COM
M _{BA}		66.11	kN-m	
M _{BC}	= -	-66.11	kN-m	
M _{CB}	=	55.14	kN-m	
M _{CD}	8	-55.14	kN-m	
M _{DC}	=	0	kN-m	

Shear Force and Bending Moment Diagram

Simply Supported Beam moments

In span	AB	M _{max}	=	80.00	kN-m
In span	ВС	M _{max}	- 1= 1	125.00	kN-m
In span	CD	M _{max}	= = 3	45.00	kN-m

to but the constant

A Contractor District

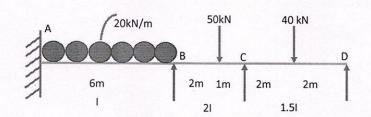
Reactions at supports

For span AB

RB1	49.79	KN
RA	30.21	KN

For span BC

RC1 97.81		KN	
RB2	102.19	· KN	


For span CD

RD	1.22	KN
RC2	58.78	KN

Final Reactions

R _A	30.21	KN
R _B	151.98	KN
R _C	156.59	KN
R _D	1.22	KN

Flexibity matrix

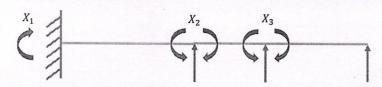
Input data

Spans

AB	=	6	m
BC		3	m
CD		4	m

MI coefficents		
AB	1	
BC	2	
CD	1.5	

Loads


on	AB	UDL	20	kN/m	NA	=	3	m
on	BC	Pointload	50	kN	Dist. from left end	T = 15	2	m
on	CD	Pointload	40	kN	Dist. from left end		2	m

Static indeterminacy

S.I	=	3
-----	---	---

Step-1 Coordinate system released

Inorder to make the structure determinate release 3 unknown forces (M $_{\!A^{\!\prime}}R_{\!B^{\!\prime}}R_{\!C}).$

Step-2 Flexibility matrix

To develop the first column of the flexibility matrix, apply a unit force(moment) at cordinate 1

f ₁₁	$= \left(\frac{L}{3EI}\right)_{AB} =$	2	/EI
f ₂₁	$= \left(\frac{L}{6EI}\right)_{AB} =$	1	/EI
f ₃₁	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	/EI

To develop the second column of the flexibility matrix, apply a unit force(moment) at cordinate 2

f ₁₂	$= \left(\frac{L}{6EI}\right)_{AB}$	=	1	/EI
f ₂₂	$= \left(\frac{L}{3EI}\right)_{AB} + \left(\frac{L}{3EI}\right)_{BC}$		2.5	/EI
f ₃₂	$= \left(\frac{L}{6EI}\right)_{BC}$		0.25	/EI

To develop the third column of the flexibility matrix, apply a unit force(moment) at cordinate 3

f ₁₃		=	0	/EI
f ₂₃	$= \left(\frac{L}{6EI}\right)_{BC}$	=	0.25	/EI
f ₃₃	$= \left(\frac{L}{3EI}\right)_{BC} + \left(\frac{L}{3EI}\right)_{CD}$	=	1.39	/EI

Flexibility matrix

			2	1	0
Ť	=	1/EI	1	2.5	0.25
			0	0.25	1.39

Step- 3 Displacement matrix

Displacement at the cordinate 1, due to applied loading

D _{P1}	$= \theta_{AB}$	$= \left(\frac{wl^3}{24El}\right)$	=	180	EI
D _{P2}	$=\theta_{BA}+\theta_{BC}$	$= \left(\frac{wl^3}{24EI}\right) + \left(\frac{wb(l^2 - b^2)}{6EIL}\right)$	=	191.11	EI
D _{P3}	$=\theta_{CB}+\theta_{CD}$	$= \left(\frac{wa(l^2 - a^2)}{6EIL}\right) + \left(\frac{wl^2}{16EI}\right)$	=	40.56	EI

Displacement matrix

		180
DP	= EI	191.11
		40.56

Step-4 Final moments matrix

$$[X_R] = [f]^{-1} * [D_p]$$

	66.01	kN-m
X _R =	47.99	kN-m
	20.56	kN-m

high der til grande

Property (1867) and the con-

Final moments

M _A =	66.01 kN-m
M _B =	47.99 kN-m
M _c =	20.56 kN-m

(AUTONOMOUS) KADAPA, ANDHRA PRADESH, INDIA-516003

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE OF COURSE COMPLETION

This certificate is presented to

Govardhan K. (Reg. No. 189Y1A0146), Student of KSRM College of Engineering (Autonomous) for successful completion of certification course on "Design of continuous beams using Microsoft Excel spread sheets" offered by Department of civil Engineering, KSRMCE-Kadapa.

Course Duration: 30 Hours; From 07/09/20 to 21/09/20 Course Instructor: Prof. G. Sreenivasa Reddy, Professor, CE, KSRMCE-Kadapa

O Asmkay Coreclu

Coordinator

Head of the Department

Principal

V.S.S. Muly

(AUTONOMOUS) KADAPA, ANDHRA PRADESH, INDIA-516003

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE OF COURSE COMPLETION

This certificate is presented to

Jayachandra Sai P. (Reg. No. 189Y1A0179), Student of KSRM College of Engineering (Autonomous) for successful completion of certification course on "Design of continuous beams using Microsoft Excel spread sheets" offered by Department of civil Engineering, KSRMCE-Kadapa.

Course Duration: 30 Hours; From 07/09/20 to 21/09/20

Course Instructor:

Prof. G. Sreenivasa Reddy,

Professor, CE, KSRMCE-Kadapa

Corella

Coordinator

Head of the Department

11: 5.5. Nimy

Principal

(AUTONOMOUS) KADAPA, ANDHRA PRADESH, INDIA-516003

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE OF COURSE COMPLETION

This certificate is presented to

Swarna L. S. (Reg. No. 189Y1A0195), Student of KSRM College of Engineering (Autonomous) for successful completion of certification course on "Design of continuous beams using Microsoft Excel spread sheets" offered by Department of civil Engineering, KSRMCE-Kadapa.

Course Duration: 30 Hours; From 07/09/20 to 21/09/20

Course Instructor:

Prof. G. Sreenivasa Reddy,

Professor, CE, KSRMCE-Kadapa

Coordinator

Head of the Department

VISS Muly

Principal

(AUTONOMOUS) KADAPA, ANDHRA PRADESH, INDIA-516003

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE OF COURSE COMPLETION

This certificate is presented to

Sateesh Kumar Reddy T. (Reg. No. 189Y1A01B0), Student of KSRM College of Engineering (Autonomous) for successful completion of certification course on "Design of continuous beams using Microsoft Excel spread sheets" offered by Department of civil Engineering, KSRMCE-Kadapa.

Course Duration: 30 Hours; From 07/09/20 to 21/09/20

Course Instructor: Prof. G. Sreenivasa Reddy,

Professor, CE, KSRMCE-Kadapa

Coordinator

Head of the Department

Principal

S. S. Minily

Department of Civil Engineering

Feedback of students on Certification Course on "Design of continuous beams using Microsoft Excel spread sheets"

		reedback of students on Cerunication C	Do you	Can you use Excel	Are the lecture		
			understand the	and solve basic	hours sufficient		Rate the
			Flexibility &	beam analysis	to cover the	Rate the course	entire
Sl.				problems?	course?	instructor	course?
No.	Roll. No.	Name of The Student	Stiffness method?		Yes	Excellent	5
1	189Y1A0126	Venkata Jithendhar Reddy Duddekunta	Yes	Yes			
2	189Y1A0132	Lakshmi Prasad Reddy Guddila	Yes	Yes	Yes	Excellent	5
3	189Y1A0134	Nitheesh Gunigari	Yes	Yes	Yes	Excellent	5
4	189Y1A0135	Sreeveni Hasti	Yes	Yes	Yes	Excellent	5
5	189Y1A0144	Bhanumanikanta Reddy Kannapu	Yes	Yes	Yes	Excellent	5
6	189Y1A0146	Govardhan Kaveti	Yes	Yes	Yes	Excellent	5
7	189Y1A0156	Sudheer Kumar Maadam	Yes	Yes	Yes	Excellent	5
8	189Y1A0158	Lokeshwar Reddy Mallireddy	Yes	Yes	Yes	Excellent	5
9	189Y1A0159	Ganesh Mandla	Yes	Maybe	Yes	Excellent	5
10	189Y1A0163	Sampath Kumar Meka	Yes	Yes	Yes	Excellent	5
11	189Y1A0166	Siva Prasad Reddy Mitta	Yes	Yes	Yes	Excellent	5
12	189Y1A0171	Venkata Sai Poojith Nagalla Pati	Yes	Yes	Yes	Excellent	5
13	189Y1A0172	Venkatesh Nagirikanti	Yes	Yes	Yes	Excellent	5
	189Y1A0175	Abhish Nanubala	Yes	Yes	Yes	Excellent	5
14			Yes	Yes	Yes	Excellent	5
15	189Y1A0179	Jayachandra Sai Pandugolu					5
16	189Y1A0187	Rakesh Prasanna Penubala	Yes	Yes	Yes	Excellent	3

17	189Y1A0193	Bindhu Rachamallu	Yes	Yes	Yes	Excellent	5
18	189Y1A0195	Swarna Latha Seelam	Yes	Yes	Yes	Excellent	5
19	189Y1A0198	Afroz Shaik	Yes	Yes	Yes	Excellent	5
20	189Y1A01B0	Sateesh Kumar Reddy Thallapalle	Yes	Yes	Yes	Excellent	5
21	189Y1A01B4	Gayathri Thopudurthy	Yes	Yes	Yes	Excellent	4
22	189Y1A01B8	Venkata Hemanth Usugari	Yes	Yes	Yes	Excellent	5
23	189Y1A01C3	Ganga Swetha Vennapusa	Yes	Yes	Yes	Good	5
24	189Y1A01C6	Naga Hema Pranitha Sree Yelikanti	Yes	Yes	Yes	Good	5
25	189Y1A01C8	Sivanatha Reddy Yeturu	Yes	Yes	Yes	Excellent	5
26	199Y5A0107	Vijay Kumar Reddy Basireddygari	Yes	Yes	Yes	Excellent	5
27	199Y5A0108	Sai Bonthalapalli	Yes	Yes	Yes	Excellent	5
28	199Y5A0109	Mahesh Naik Bukke	Yes	Yes	Yes	Excellent	5
29	199Y5A0112	Mahesh Babu Chinthakunta	Yes	Yes	Yes	Excellent	5
30	199Y5A0116	Pavan Kalyan Dokka	Yes	Yes	Yes	Good	4
31	199Y5A0117	Dastagiri Dudekula	Yes	Yes	Yes	Excellent	5
32	199Y5A0118	Premaraju Erapogu	Yes	Yes	Yes	Excellent	4
33	199Y5A0123	Ramu Gosetty	Yes	Yes	Yes	Excellent	5
34	199Y5A0125	Venkateshwarlu Judam	Yes	Yes	Yes	Excellent	5
35	199Y5A0127	Venkateswarlu Kashetty	Yes	Yes	Yes	Excellent	5
36	199Y5A0130	Vinodkumar Madhuranthakam	Yes	Yes	Yes	Excellent	5

37	199Y5A0131	Bharath Venkata Sai Malle Bharath	Yes	Yes	Yes	Excellent	5
38	199Y5A0132	Mahesh Mallepogu Budigi	Yes	Yes	Yes	Excellent	5
39	199Y5A0134	Sai Kumar Mannula	Yes	Yes	Yes	Excellent	4
40	199Y5A0138	Reddaiah Nagulugari	Yes	Yes	Yes	Excellent	5
41	199Y5A0144	Praveen Kumar Reddy Pathi	Yes	Yes	Yes	Good	5
42	199Y5A0149	Chandramouli Sambaturu	Yes	Yes	Yes	Excellent	5
43	199Y5A0150	Sambasivareddy Sanikommu	Yes	Yes	Yes	Excellent	5
44	199Y5A0152	Mohammad Arief Shaik	Yes	Yes	Yes	Excellent	= 5
45	199Y5A0155	Sravani Sirigiri	Yes	Yes	Yes	Excellent	5

Coordinator

HoD-Civil Engg.

Head
Department of Civil Engineering
K.S.R.M. College of Engineering
(Autonomous)
KADAPA 516 003. (A.P.)